1. (String Matching)

(a) (Rabin-Karp algorithm) First create a list of 2 digit numbers \(n \) where \(\text{val}(n) = 5 \). The list is 05 12 19 26 33 40 47 54 61 68 75 82 89 96. Then create the desired string as follows: start with any digit \(x \), find a \(y \) so that \(xy \) is in the list, and repeat this step with \(x \) set to \(y \). The result is not unique, because there is sometime more than one choice for \(y \). Starting with 1, I get 1 2 6 8 9 6 1 9.

(b) Proof is by induction on \(i \).

- \(i = 1 \): We have to show that \(c(ab)^n a = (ab)^{n-1} a \), for \(n \geq 1 \). This follows from: (1) \((ab)^{n-1} a \) is both a prefix and a suffix of \((ab)^n a\), and (2) the only longer proper prefix of \((ab)^n a\) is \((ab)^n\), which is not a suffix.

- \(i + 1 \): Assume \(c^i((ab)^n a) = (ab)^{n-i} a \), where \(i < n \). We show that \(c_{i+1}(ab)^n a = (ab)^{n-i-1} a \).
 \[
 c^{i+1}(ab)^n a = \{\text{definition of } c^{i+1}\} \\
 c(c^i((ab)^n a)) = \{\text{induction hypothesis}\} \\
 c((ab)^{n-i} a) = \{\text{from the first proof}\} \\
 (ab)^{n-i-1} a
 \]

(c) Yes. Suppose \(v = "ab" \) and \(v' = "aba" \). Then \(c(v) = \epsilon \), and \(u \) has been set to \(c(v) \), i.e., \(\epsilon \), before this portion of the code is executed. Because \(p[v] \) and \(p[\bar{v}] \) are both "a", \(c(v') \) will be set "a".

(d) (KMP Algorithm)

\[
\begin{array}{c|cccccccccccc}
 l & index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
 text & a & b & a & b & a & b & a & b & a & b & a & b \\
 0 & pattern & a & b & a & b & a & b & a & b & a & b & a & b \\
 2 & pattern & a & b & a & b & - & - \\
 4 & pattern & a & b & - & - & - & - \\
 5 & pattern & a & b & a & - & - & - \\
 7 & pattern & a & b & - & - & - & - \\
 8 & pattern & a & b & a & b & - & - \\
\end{array}
\]

It is possible to terminate the algorithm when \(l = 7 \), because the text cannot possibly match the pattern.
2. (Data Parallel Programming)

(a) We show that for \(n \geq 1 \), \(\text{rev}(f \ n) = (f \ n) \). The required result follows because

\[
\begin{align*}
f(n + 1) & \quad \{\text{definition of } f\} \\
(f n) \ | \ \text{rev}(f n) & \quad \{\text{rev}(f n) = (f n)\} \\
(f n) \ | \ (f n) & \quad \{\text{rev}(f n) = (f n)\}
\end{align*}
\]

The proof is by induction on \(n \).

- \(n = 1 \): We show \(\text{rev}(f 1) = (f 1) \). From the definition of \(f \),
 \((f 1) = \langle 0 \ 1 \ 1 \ 0 \rangle \). And from the definition of \(\text{rev} \), \(\text{rev}(f 1) = \langle 0 \ 1 \ 1 \ 0 \rangle \). Hence \(\text{rev}(f 1) = (f 1) \).

- \(n + 1 \): Assume by induction hypothesis that \(\text{rev}(f n) = (f n) \). Then,

\[
\begin{align*}
\text{rev}(f(n + 1)) & \quad \{\text{definition of } f\} \\
\text{rev}((f n) \ | \ \text{rev}(f n)) & \quad \{\text{induction hypothesis applied to the second term}\} \\
\text{rev}((f n) \ | \ (f n)) & \quad \{\text{definition of } \text{rev}\} \\
\text{rev}(f n) \ | \ \text{rev}(f n) & \quad \{\text{induction hypothesis applied to the first term}\} \\
(f n) \ | \ \text{rev}(f n) & \quad \{\text{definition of } f\} \\
f(n + 1) & \quad \{\text{definition of } f\}
\end{align*}
\]

(b) i. \((u \sim r) \land (v \sim s)\)

ii. \(gr\ u = u \sim (rr\ u)\), where \(rr\) is right-rotate.

iii. \(gr(u \triangledown v)\)

\[
\begin{align*}
gr(u \triangledown v) & \quad \{\text{definition of } gr\} \\
(u \triangledown v) \sim rr(u \triangledown v) & \quad \{\text{definition of } rr\} \\
(u \triangledown v) \sim ((rr\ v) \triangledown u) & \quad \{\text{from (i)}\} \\
(u \sim (rr\ v)) \land (v \sim u) & \quad \{\text{rewrite the second term}\} \\
(u \sim (rr\ v)) \land (u \sim v) & \quad \{\text{rewrite the second term}\}
\end{align*}
\]