1. (Recursive Programming; 28 points)

(b) Define function gpos of two arguments k and n, both integers and  $n \geq 0$ , where (gpos k n) returns a list of n consecutive integers starting at k. Then,

```
pos n = gpos 1 n
```

The definition of gpos is given by

gpos k 0 = []  
gpos k 
$$(n+1) = k$$
:  $(gpos (k+1) n)$ 

- 2. (Finite State Machines)
  - (a) The following machine accepts strings with even number of zeroes.



Figure 1: Machine that accepts strings with even number of zeroes

The following machine accepts strings ending in "11".



Figure 2: Machine that accepts strings ending in "11"

Combine the two machines.



Figure 3: Combination of the two machines given above

## (b) Define the following predicates.

emp(x): string x is empty

p0(x): last symbol of string x is 0 p1(x): last symbol of string x is 1

eq(x): number of zero blocks in x equals the number of one blocks

lt(x): number of zero blocks in x is 1 less than the number of one blocks gt(x): number of zero blocks in x is 1 more than the number of one blocks

## Annotate as follows:

A:  $emp \land eq$ 

B:  $p0 \wedge gt$ 

C:  $p1 \wedge lt$ 

D:  $p1 \wedge eq$ 

E:  $p0 \wedge eq$ 

## Proof for transition:

C to E:  $p1(x) \wedge lt(x) \Rightarrow p0(x0) \wedge eq(x0)$ 

E to E:  $p0(x) \wedge eq(x) \Rightarrow p0(x0) \wedge eq(x0)$ 

E to C:  $p0(x) \wedge eq(x) \Rightarrow p1(x1) \wedge lt(x1)$ 

(c) 0(0|1)\*1