
CS 337 Test 2 4/5/06
Open book and notes.
Max points = 50 Time = 50 min Do all questions.

1. (Finite State Machine; 20 points) The finite state machine in Figure 1
compares the magnitudes of two binary strings of equal length. The ma-
chine is fed the bits alternately from both strings, from high to low order.
So, given that the first string is 010 and the second one is 011, the ma-
chine receives 001101. The machine accepts such a string if and only iff
the first string is smaller in magnitude than the second string (for 001101,
the machine will accept). Note that the machine is in a reject state after
receiving an odd number of bits (i.e., when it has received more bits from
the first string than from the second).

0 1

0 1

1 0

0,10,1 0,1 0,1

A

C

D

E

F

G

B

Figure 1: Finite State Machine to compare binary strings

(a) (16 points) We would like to prove that the given machine meets the
specification. But you will only do a part of the proving. Annotate
the states with appropriate predicates; see P.72 of the book. Specify
what needs to be proved for the transitions incoming and outgoing
from each state and in the initial state. You don’t have to prove the
propositions.
Hint: Let f be the bits of the first string and s of the second string
at any state of the machine. Thus, if the machine has received 001,
f = 01 and s = 0. Write pre.f , when f is nonempty, for the prefix
of f which includes all but the last bit of f .
First, write a predicate over f , pre.f and s in each state. Next,
generate one proposition for each edge and the initial state.

(b) (4 points) Modify the machine so that it accepts iff the two input
strings are different.

1



2. (Haskell; 30 points)

(a) (8 points) Define a function that creates a list of unique elements
from a sorted list. So, a possible input is [2,2,3,3,4] and the
corresponding output is [2,3,4]. Use only the basic comparison
operator (==) and recursion.

(b) (9 points) Given is a non-empty list of elements L. Write a function
that creates a list of the same length as L, and its ith element is the
list of elements up to and including the ith element of L. Thus, given
L to be [2,3,4], the output should be [[2],[2,3],[2,3,4]].
Hint: Try to use map function.

(c) (3 points) what is the type of the function being defined in (2b)?

(d) (10 points) Prove that map f (rev xs) = rev (map f xs), for any
function f and list xs. Use the following definition of rev:

rev [] = []
rev (x: xs) = (rev xs) ++ [x]

Use: map f (xs ++ ys)= (map f xs) ++ (map f ys), and
map f (x:xs) = [f x]:(map f xs).

2


