CS 337	Test 3	5/5/06
Open book and notes.		
Max points $= 50$	Time = 50 min	Do all questions.

1. (Relational Algebra; 15 points)

- (a) (5 points) You are given relations CT and CR in Table 1 and Table 2 respectively. Compute their (natural) join, $CT \bowtie CR$.
- (b) (5 points) Write a query for (but don't compute) the Day-Hour pairs during which Tay 2.106 is occupied by some course, given only the tables CT and CR. Use the π and σ notation.
- (c) (5 points) Write a query for (but don't compute) the courses which meet on Friday(F) in Tay 2.106. Use the π and σ notation.

Course	Day	Hour
Phy313K	Т	9AM
Phy313K	Th	9AM
CS380D	F	9AM
CS337	Μ	$2\mathrm{PM}$
CS337	W	2 PM
CS337	\mathbf{F}	2 PM

Table 1: CT: Course Timings

Course	Room
Phy313K	Phi 1.021
CS380D	Wel 2.304
CS337	Tay 2.106

Table 2: CR: Course Room

- 2. (String Matching; 17 points)
 - (a) (4 points) Show a string s of length 2n such that $c^n(s) = \epsilon$. Recall that c(u) is defined if and only if $u \neq \epsilon$.
 - (b) (6 points) A *palindrome* is a string that is equal to its reverse. Let pal(v) denote that v is a palindrome, that is

 $pal(v) \equiv (v = rev(v))$, where rev is the reverse function.

Given that $u \preceq v$ means (as in the class notes) "*u* is both a prefix and a suffix of *v*", prove that

 $(pal(v) \land u \preceq v) \Rightarrow pal(u).$

Hint: Write $u \sqsubseteq v$ to denote that u is a prefix of v.

i. A formal definition of $u \preceq v$ is given by

 $u \preceq v \equiv (u \sqsubseteq v \land rev(u) \sqsubseteq rev(v))$

- ii. If strings x and y are both prefixes of z and they have the same length, then x = y.
- iii. x and rev(x) are of the same length.
- (c) (7 points) Using

(core definition): $x \leq c(y) \equiv x \prec y$

show that the core function is monotonic, that is,

 $u \preceq v \; \Rightarrow \; c(u) \preceq c(v)$

You may assume that \leq is a partial order.

- 3. (Powerlist; 18 points)
 - (a) (10 points) Let p be a powerlist of even length (so it can not be a singleton list) and ex a powerlist which consists of 0s and 1s and is half the length of p. Write a function f over p and ex, using the notation for powerlists, that permutes the items of p as follows: if the i^{th} element of ex is 1 then exchange the $2i^{th}$ and $(2i + 1)^{th}$ elements of p, and if it is 0 leave them as they are. (The items in a powerlist are indexed starting at 0). So,

 $f\langle 0 \ 1 \ 2 \ 3 \rangle \langle 1 \ 0 \rangle = \langle 1 \ 0 \ 2 \ 3 \rangle$, and $f\langle 0 \ 1 \ 2 \ 3 \rangle \langle 0 \ 1 \rangle = \langle 0 \ 1 \ 3 \ 2 \rangle$

(b) (8 points) You are given the following definition of *rev* over powerlists (reproduced from Page 185 of Class notes).

 $rev\langle x \rangle = \langle x \rangle$ $rev(p \mid q) = (rev q) \mid (rev p)$

Prove that

 $rev(p \bowtie q) = (rev \ q) \bowtie (rev \ p)$