Open book and notes. Max points = 50

 $\mathrm{Time} = 50~\mathrm{min}$

Do all questions.

- 1. Relational Algebra
 - (a) The natural join of CT and CR, $CT \bowtie CR$, is shown in Table 1.

Course	Day	Hour	Room
Phy313K	Т	9AM	Phi 1.021
Phy313K	Th	9AM	Phi 1.021
CS380D	\mathbf{F}	9AM	Wel 2.304
CS337	M	2PM	Tay 2.106
CS337	W	2PM	Tay 2.106
CS337	\mathbf{F}	2PM	Tay 2.106

Table 1: $CT \bowtie CR$

(b) The Day-Hour pairs during which Tay 2.106 is occupied is computed by

$$\pi_{Day,Hour}(\sigma_{Room="Tay2.106"}(CT\bowtie CR))$$

(c) The Courses which meet on Friday(F) in Tay 2.106 is computed by

$$\pi_{Course}(\sigma_{Day="F'' \land Room="Tay2.106"}(CT \bowtie CR))$$

- 2. (String Matching)
 - (a) One possible s is $(01)^{2n}$.

(b)
$$pal(v) \wedge u \leq v$$

$$\equiv \{ \exp \text{and definitions of } pal \text{ and } \leq \}$$

$$(v = rev(v)) \wedge (u \sqsubseteq v \wedge rev(u) \sqsubseteq rev(v))$$

$$\Rightarrow \{ \operatorname{replace } rev(v) \text{ by } v \}$$

$$u \sqsubseteq v \wedge rev(u) \sqsubseteq v$$

$$\equiv \{ u \text{ and } rev(u) \text{ have the same length. They are both prefixes of } v \}$$

$$u = rev(u)$$

$$\equiv \{ \operatorname{definition of } pal \}$$

$$pal(u)$$

(c) First, we show $c(u) \prec u$. In $x \preceq c(y) \equiv x \prec y$, substitute c(u) for x and u for y to get $c(u) \preceq c(u) \equiv c(u) \prec u$. That is, $c(u) \prec u$. Next,

$$\begin{array}{ll} u \preceq v \\ \text{As shown, } c(u) \prec u \} \\ c(u) \prec v \\ \equiv & \{ \text{in } x \preceq c(y) \equiv x \prec y \text{, substitute } c(u) \text{ for } x \text{ and } v \text{ for } y \text{ to get} \\ c(u) \preceq c(v) \equiv c(u) \prec v \} \\ c(u) \preceq c(v) \end{array}$$

```
(a)  f\langle x \ y \rangle \langle 0 \rangle = \langle x \ y \rangle 
 f\langle x \ y \rangle \langle 1 \rangle = \langle y \ x \rangle 
 f(u \mid v)(r \mid s) = (f \ u \ r) \mid (f \ v \ s)
```

- (b) We show $rev(p\bowtie q)=(rev\ q)\bowtie (rev\ p).$ Proof is by structural induction on p and q.
 - Base case:

```
rev(\langle x \rangle \bowtie \langle y \rangle)
= {From Law L0 : \langle x \rangle \bowtie \langle y \rangle = \langle x \rangle \mid \langle y \rangle}
rev(\langle x \rangle \mid \langle y \rangle)
= {definition of rev}
rev\langle y \rangle \mid rev\langle x \rangle
= {rev\langle x \rangle = \langle x \rangle, rev\langle y \rangle = \langle y \rangle. Thus, they are singletons. Apply Law L0}
rev\langle y \rangle \bowtie rev\langle x \rangle
```

• Inductive case: Let $p = r \mid s$ and $q = u \mid v$

```
rev(p\bowtie q)
= \begin{cases} p = r \mid s \text{ and } q = u \mid v \end{cases}
rev((r \mid s)\bowtie(u \mid v))
= \begin{cases} \text{commutativity of } \mid,\bowtie \end{cases}
rev((r\bowtie u) \mid (s\bowtie v))
= \begin{cases} \text{definition of } rev \rbrace
rev(s\bowtie v) \mid rev(r\bowtie u)
= \begin{cases} \text{induction} \rbrace
(rev\ v\bowtie rev\ s) \mid (rev\ u\bowtie rev\ r)
= \begin{cases} \mid,\bowtie \text{ commute} \rbrace
(rev\ v \mid rev\ u)\bowtie(rev\ s\mid rev\ r)
= \begin{cases} \text{apply definition of } rev \text{ to both sides of } \bowtie \rbrace
rev(u \mid v)\bowtie rev(r \mid s)
= \begin{cases} p = r \mid s \text{ and } q = u \mid v \rbrace
(rev\ q)\bowtie(rev\ p)
```