
CS 337 Solution to Test 1 2/21/07

1. (Compression)

(a) A Huffman tree for symbols with the frequencies {12, 8, 20, 6, 32, 4, 20, 24}
is shown below.
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(b) i. The transmissions corresponding to the given trie are shown in
Table 1.

index word transmission
0 〈〉 none
1 t (0, t)
2 a (0, a)
3 c (0, c)
4 ca (3, a)
5 ta (1, a)
6 cc (3, c)
7 ag (2, g)
8 tac (5, c)

Table 1: The transmissions corresponding to the given trie

ii. The transmitted string is the concatenation of the strings in the
second column of the table given above: taccataccagtac.

iii. The pairs that have to be transmitted for agtaccag# given that
this trie already exists are listed in Table 2.

(c) Suppose that the string Ophelia appears in a text, but the letter O
appears nowhere else. The first occurrence of this word adds O as an
entry in the trie, the next occurrence adds Op as an entry, etc. Since
Ophelia has 7 letters, its 7th occurrence will add the entire word to
the trie.
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index word transmission
9 agt (7, t)
10 ac (2, c)
11 cag (4, g)
12 # (0,#)

Table 2: The transmissions corresponding to agtaccag#

2. (Error Correction)

(a) To get the necessary and sufficient condition on x, y and z so that
((x + y)⊕ z) < z, consider Exercise 6.3 in Section 2.1.2, Page 25, of
the Notes. There we derive the condition for (x ⊕ u) < x, which is:
x has a 1 in the position where the leading 1 bit of u appears.
To match the given pattern, we rewrite the inequality as (u⊕x) < x,
and set u to x + y and x to z to get ((x + y)⊕ z) < z. Rewriting the
condition: z has a 1 in the position where the leading 1 bit of x + y
appears.

(b) We prove that the number of 1s in Hn, the Hadamard matrix of size
2n × 2n, is 2n−1 × (2n + 1), by induction on n.

• n = 0 : H0 has one 1, and 20−1 × (20 + 1) = 1.

• n + 1 : We have to show that Hn+1 has 2n × (2n+1 + 1) 1s. To
compute the number of 1s in Hn+1, we have to know the number of
zeroes in Hn, because Hn appears as a component. Since the total
number of entries in Hn is 2n × 2n and, inductively, 2n−1 × (2n + 1)
are 1s, the number of zeroes is 2n × 2n − 2n−1 × (2n + 1). Therefore,
the number of 1s in Hn+1 is:

3× 2n−1 × (2n + 1) + 2n × 2n − 2n−1 × (2n + 1)
= 2× 2n−1 × (2n + 1) + 2n × 2n

= 2n × (2n + 1) + 2n × 2n

= 2n × (2n + 1 + 2n)
= 2n × (2n+1 + 1)

(c) The sender is transmitting 9-bit strings as 13-bit codes using Ham-
ming code.

i. Hamming code can correct at least one error. From the Theorem
of Page 39 in the notes, the distance between any two codewords
exceeds 2× 1; so, the distance is at least 3.

ii. Consider the string which has a 1 in its lowest bit. It will be
encoded as the second row of Table 3. And the string which is
all zero is coded as an all zero string, shown in the last row of
Table 3. Their distance is exactly 3.
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13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: Hamming code encoding of two strings

3. (Cryptography)

(a) 3636 mod 11
= {Modular Simplification Rule}

(36 mod 11)36 mod 11
= {36 mod 11 = 3}

336 mod 11
= {rewrite 336}

((310)3 × 36) mod 11
= {use Modular Simplification Rule to convert 310 to 310 mod 11}

((310 mod 11)3 × 36) mod 11
= {11 is prime, and 3 and 11 are relatively prime;

from Fermat’s Theorem, 310 mod 11 = 1}
((1)3 × 36) mod 11

= {simplify}
36 mod 11

= {simplify}
(33 mod 11)2 mod 11

= {simplify}
52 mod 11

= {compute}
3

(b) Given that Bob’s public key is the pair (3, 355), we factor 355 to
get 5 × 71. Then φ(355) = 4 × 70 = 280. We need to find d such

that 3d
mod 280≡ 1. We can use extended Euclid’s algorithm. But

inspection with a few small values shows that 2×280+1 = 561, which

is divisible by 3; i.e., 3× 187 = 561. Therefore, 3× 187
mod 280≡ 1, or

d = 187.
(c) Using 1 for encryption is silly, the encrypted message is same as the

original message, so it is same as sending the message in plaintext.

If (1, n) is the private key, i.e., d = 1, then e
mod φ(n)≡ 1. So, e =

φ(n)+1. We show that the encrypted message is same as the original
message.
Let M be encrypted to M ′ and then decrypted to M ′′. We know
M = M ′′. Now, M ′′ = (M ′)1 mod n = M ′. Therefore, M ′ = M ′′ =
M .
If we are transmitting a text in English, the encrypted message is
easily seen to be meaningful, and hence decrypted. However, if we
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are sending a string (without any apparent meaning), such as a pass-
word, no one will know that we are transmitting in plaintext. (yet,
I would not recommend this transmision strategy; it is vulnerable if
the eavesdropper merely attempts using the password).
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