
CS 337 Solution to Test 2 4/4/07
Open book and notes.
Max points = 75 Time = 75 min Do all questions.

1. (Finite State Machine)

For part(1) the input alphabet is {coin,pass} and the output alphabet is
{green,red}; the machine is shown in the left figure. For part (2), the input
alphabet is {coin,pass,reset} and the output alphabet is {green,red,alarm};
the machine is shown in the right figure.

coin/green

pass/red

L U

coin/green

pass/red

L U

pass/alarm

coin/red

reset

S

2. (Finite State Machine) Define the following predicates over any binary
string x:

p = every 0 is immediately followed by a 1 in x
q = the last item of x is 0

and every 0 in x, except the very last, is immediately followed by a 1
r = there are two consecutive 0s in x

I have attached the predicate names to the states in Fig 1.

0
1

0

1

0,1

p

q r

Figure 1: Accept binary strings in which a 0 is followed by a 1

The theorems that have to be proved, one for each transition, are shown
in Table 1. Additionally, p has to be proved for ε.

3. (Regular Expressions)

(a) 0∗ 1∗ 2∗ admits strings, such as 011, which are not strictly increasing.

1



p holds for ε
if p holds for x then q holds for x0
if p holds for x then p holds for x1
if q holds for x then r holds for x0
if q holds for x then p holds for x1
if r holds for x then r holds for x0
if r holds for x then r holds for x1

Table 1: Verifications of state transitions

(b) zero = ε|0
one = ε|1
two = ε|2

Observe that in an increasing string each symbol appears either once
or none at all. Therefore, the desired expression is zero one two

4. (Types)

(a) charVal :: Int -> Char

(b) parallel :: ((Int, Int),(Int, Int)) -> ((Int, Int),(Int, Int)) -> Bool

(c) test :: (a -> Bool) -> a -> Bool

(d) tower :: Int -> b -> b -> b -> [(Int,b,b)]

(e) flatten :: [[a]] -> [a]

5. (Haskell Programming)

(a) The function takes a list of pairs as input and produces a pair of lists.
Function transpose, given below, takes the first element of each input
pair to form the first output list and the second elements to form the
second output list.

transpose [] = ([],[])
transpose ((a,b): xs) = ((a: ys), (b: zs))

where (ys, zs) = try xs

(b) Define fib3 in terms of another function fibtriple.

fibtriple 0 = (0,1,2)
fibtriple n = (y, z, x+y+z)

where (x,y,z) = fibtriple (n-1)
fib3 n = x where (x,y,z) = fibtriple n

(c) close (x:(y:[])) = x-y
close (x:(y:ys))
| x-y < close(y:ys) = x-y
| otherwise = close(y:ys)

2


