
CS 337 Solution to Test 3 5/10/07

1. (PART 3: Proofs of Recursive Programs) Proof is by induction on n in
the definition of grayGen.

• n = 0 : rev [""] = [""]

• n > 0 : we have to show rev((cons0 a) ++ (cons1 b)) = (cons1 a) ++ (cons0 b)

rev((cons0 a) ++ (cons1 b))
= {rev(xs ++ ys) = (rev ys) ++ (rev xs)}

rev(cons1 b) ++ rev(cons0 a)
= {rev(cons1 ys) = cons1(rev ys)}

cons1(rev b) ++ rev(cons0 a)
= {rev(cons0 ys) = cons0(rev ys)}

cons1(rev b) ++ cons0(rev a)
= {induction: rev a = b where (a, b) = grayGen n

Also, rev(rev a) = (rev b), or a = (rev b) using rev(rev xs) = xs}
(cons1 a) ++ (cons0 b)

2. (PART 3: Higher Order Functions)

(a) zip ([], []) = []
zip ((x:xs), (y: ys)) = (x,y): zip (xs,ys)

zip :: ([a],[b]) -> [(a,b)]

(b) unzip [] = ([], [])
unzip ((x,y): xyss) = ((x:xs), (y: ys))

where (xs, ys) = unzip xyss

unzip :: [(a,b)] -> ([a],[b])

(c) cross (f,g) (x,y) = (f x , g y)

cross :: (a -> b,c -> d) -> (a,c) -> (b,d)

3. (PART 3: Rabin-Karp String Matching; 11 points)

(a) Treat the strings as binary. Successful matches are shown with a bar
over the string: 011010001101 1101.
With q = 3 and 1101 mod 3 = 1, we get possible collisions at x pro-
vided x mod 3 = 1 and x represents a 4-bit string. That is, collisions
occur at 0001(1), 0100(4), 0111(7) and 1010(10). I show the colli-
sions in three groups (this is due to the limitation of my math editing
software):
0110100011011101, and
0110100011011101, and
0110100011011101

1

The collisions do decrease with q = 5, but no general inference can be
drawn from it. Since 1101 mod 5 = 3, we expect collisions at 0011(3)
and 1000(8). I show the collisions in two groups, as before:
0110100011011101, and
0110100011011101

(b) Use a single q for all patterns; let pi be derived by applying mod q
to the ith pattern.
Nothing special needs to be done if the patterns are of the same
length. Use the same algorithm as before to go over the text, and for
each symbol in the text check against all pis.
For the general case of patterns of arbitrary lengths, let m be the
maximum pattern length. After the initial prefix of length m in the
text, each symbol in the text yields a value which is again matched
against all pis. In the initial prefix of length m, only patterns of the
appropriate length are matched.

4. (PART 3: String Matching)

(a) The core function is monotonic, that is,

u ¹ v ⇒ c(u) ¹ c(v)

u ¹ v
⇒ {given c(u) ≺ u and ¹ a partial order}

c(u) ≺ v
⇒ {definition of core: u ¹ c(v) ≡ u ≺ v.

Substitute c(u) for u and v for v in the right side}
c(u) ¹ c(v)

(b) Given that u ¹ v, it is not necessarily true that us ¹ vs, for any
symbol s. Consider u = a and v = aba. Then, u ¹ v. However,
as ¹ abas does not hold unless s = b.

(c) The core computation does not have to be modified.The only modi-
fication to the algorithm in P. 163 is to replace the condition t[r] =
p[r − l] by t[r] = ∗ ∨ t[r] = p[r − l] (and, similarly, t[r] 6= p[r − l] by
t[r] 6= ∗ ∧ t[r] 6= p[r − l]).

t[r] = ∗ ∨ t[r] = p[r − l] → r := r + 1
{ more text has been matched }

t[r] 6= ∗ ∧ t[r] 6= p[r − l] ∧ r = l → l := l + 1; r := r + 1
{ we have an empty string matched so far;

the first pattern symbol differs from the next text symbol }
t[r] 6= ∗ ∧ t[r] 6= p[r − l] ∧ r > l → l := l′

{ a nonempty prefix of p has matched but the next symbols don’t }

2

5. (PART 3: Relational Databases)

(a) List of workers and their managers, where the worker salary is below
$20,000.

πworker , manager (σsalary<20000 (M ./ S))

(b) List of workers whose spouse is their manager.

πworker (σmanager=spouse(F ./ M))

(c) Average salary by department.

DeptAAvg salary(M ./ S)

(d) Workers who are paid more than their managers.

πworker (σsalary>man salary(M ./ S ./ Sworker :=manager ;salary:=man salary))

Solutions to bonus questions are on the next page

3

Solutions to bonus questions
6. (PART 1: Error Correction)

(a) Every word at distance 4 from a codeword is not itself a codeword.
1 1 1 1 1 1 1 1 is a codeword (top row of Table 2.12). But 0 0 0 0 1 1 1 1
is not.

(b) If the sender sends 1 0 0 1 1 0 0 1 and the receiver receives 1 1 1 1 1 0 1 1,
the Hamming distance between the two words is 3. Since the distance
among codewords is exactly 4, the received message is not a code-
word; so the receiver can detect the error.
He will pick the closest codeword to 1 1 1 1 1 0 1 1 which is 1 1 1 1 1 1 1 1.

(c) No. Suppose 1 1 1 1 1 1 1 1 is sent and it is corrupted to 1 0 1 0 1 0 1 0;
there is exactly two errors in each half, left and right. The received
word is also a codeword. So the receiver can not tell if 1 0 1 0 1 0 1 0
was sent and received perfectly, or 1 1 1 1 1 1 1 1 was sent and
received erroneously.

7. (PART 2: Finite State Machine)

(a) A machine that accepts exactly half the binary strings: the machine
rejects all strings starting with 0 and accepts all starting with 1.

(b) A machine that accepts a binary string unless 111 is a substring.

0 1 1 1

0

0 0,1

Figure 1: Accept unless 111 is a substring.

(c) A machine that receives a string of bit-pairs (x, y) as input and ac-
cepts if there are at least 3 inputs pairs (x, y) where x < y.

0,1 0,1 0,1

A= {(0,0), (1,0), (1,1)}

A

A A
0,1

A

4

