1. (Finite State Machine Design)

(a) (7 points) We are given that all prefixes satisfy \(n_0 \leq n_1 \leq n_0 + 2 \).
Let \(d = n_1 - n_0 \). Then we have \(0 \leq d \leq 2 \). For the machine in Figure 1 each state is labeled with a value of \(d \): 0, 1, 2 or other.

(b) See Figure 2; each state is labeled with the remainder of division by 3: 0, 1, or 2.

(c) See Figure 3. The left state is entered initially and following the first white space in a block of white spaces. The right state is entered when a non-white space is seen. Here \(-\) denotes a white space and \(a\) any other symbol.

(d) See Figure 4. States 1 and 2 define the behavior of the machine when it is operating on an expression which is not within a parentheses;
states 3 and 4 are the corresponding states when a "(" has been seen. The machine is in state 1 initially and whenever a digit is expected. And it is in state 2 when an operator is expected. The meanings of states 3 and 4 are analogous.

Figure 4: Solution to Problem 1d

2. (Finite State Machine Theory)

(a) Let t denote the string associated with a state. We first postulate a predicate with each state. Predicate $A(t)$ holds for every string t that leads to state A; similarly for the other states. See Figure 5.

$A(t)$: t is a repetition of 1s (possibly empty).
$B(t)$: t is of the form $x0$, and 011 is not a substring of x.
$C(t)$: t is of the form $x01$, and 011 is not a substring of x.
$D(t)$: 011 is a substring of t.

Figure 5: Transducer in Problem 2

The theorems to be proven are:

$A(\epsilon), A(t) \Rightarrow A(t1), A(t) \Rightarrow B(t0),$
$B(t) \Rightarrow B(t0), B(t) \Rightarrow C(t1), C(t) \Rightarrow B(t0),$
$C(t) \Rightarrow D(t1), D(t) \Rightarrow D(t0), D(t) \Rightarrow D(t1)$

(b) The strings of the language defined by the regular expression $(a \mid ab)(c \mid bc)$ are ac, abc and $abbc$. Another regular expression, using both alternation and concatenation, that denotes the same language is $a(\epsilon|\epsilon\mid bb)c$.
(c)
 i. Each string (in the language) has at least one 1: $0^*1(0|1)^*$
 ii. Each string has at most one 1: $0^*|0^*10^*$
 iii. Each string has exactly one 1: 0^*10^*
 iv. Every block of 1s in a string is of even length: $(0^*(11)^*)^*$

3. (Functional Programming)

(a)
 xor 0 0 = 0
 xor 0 1 = 1
 xor 1 0 = 1
 xor 1 1 = 0
 xor x y
 | (even x) && (even y) = 2 * (xor p q)
 | (even x) && (odd y) = 2 * (xor p q)+1
 | (odd x) && (even y) = 2 * (xor p q)+1
 | (odd x) && (odd y) = 2 * (xor p q)
 where
 p = x \ 'div' 2
 q = y \ 'div' 2

Note: The first 4 lines may be replaced by using the following conditional equation:

 | x == 0 && y == 0 = 0

(b) We first compute $h(n) = (g(2n), g(2n + 1))$, using a scheme similar to that for fibpair, given in the class notes.

 h 0 = (0,1)
 h n = (x+y,x)
 where
 (x,y) = h(n-1)

Then,

 g(m)
 | even m = fst(h(m \ 'div' 2))
 | odd m = snd(h(m \ 'div' 2))

(c)
 g 0 = (f 0 == 0)
 g (n+1) = (g n) && (f(n+1) == 0)

(d) power2new 0 = 1
 power2new n
 | even n = r * r
 | odd n = r * r * 2
 where r = power2new (n \ 'div' 2)