
CS 337 Solution to Test 2 4/2/08

1. (Finite State Machine Design)

(a) (7 points) We are given that all prefixes satisfy n0 ≤ n1 ≤ n0 + 2.
Let d = n1 − n0. Then we have 0 ≤ d ≤ 2. For the machine in
Figure 1 each state is labeled with a value of d: 0, 1, 2 or other.

0 1 2

other

1 1

0 0

0 1

Figure 1: Solution to Problem 1a

(b) See Figure 2; each state is labeled with the remainder of division by
3: 0, 1, or 2.

0 1 2
1

0

0

0

1

1

Figure 2: Solution to Problem 1b

(c) See Figure 3. The left state is entered initially and following the first
white space in a block of white spaces. The right state is entered
when a non-white space is seen. Here - denotes a white space and a
any other symbol.

−

a/a

a/a

−/−

Figure 3: Solution to Problem 1c

(d) See Figure 4. States 1 and 2 define the behavior of the machine when
it is operating on an expression which is not within a parentheses;

1

states 3 and 4 are the corresponding states when a “(“ has been seen.
The machine is in state 1 initially and whenever a digit is expected.
And it is in state 2 when an operator is expected. The meanings of
states 3 and 4 are analogous.

d

+, X

d
+, X

1 2

3 4

()

Figure 4: Solution to Problem 1d

2. (Finite State Machine Theory)

(a) Let t denote the string associated with a state. We first postulate
a predicate with each state. Predicate A(t) holds for every string t
that leads to state A; similarly for the other states. See Figure 5.

A(t):: t is a repetition of 1s (possibly empty).
B(t):: t is of the form x0, and 011 is not a substring of x.
C(t):: t is of the form x01, and 011 is not a substring of x.
D(t):: 011 is a substring of t.

0 1 1

1 0

0

0,1

A C DB

Figure 5: Transducer in Problem 2

The theorems to be proven are:

A(ε), A(t) ⇒ A(t1), A(t) ⇒ B(t0),
B(t) ⇒ B(t0), B(t) ⇒ C(t1), C(t) ⇒ B(t0),
C(t) ⇒ D(t1), D(t) ⇒ D(t0), D(t) ⇒ D(t1)

(b) The strings of the language defined by the regular expression (a | ab)(c | bc)
are ac, abc and abbc. Another regular expression, using both alterna-
tion and concatenation, that denotes the same language is a(ε|b|bb)c.

2

(c) i. Each string (in the language) has at least one 1: 0∗1(0|1)∗

ii. Each string has at most one 1: 0∗|0∗10∗

iii. Each string has exactly one 1: 0∗10∗

iv. Every block of 1s in a string is of even length: (0∗(11)∗)∗

3. (Functional Programming)

(a) xor 0 0 = 0
xor 0 1 = 1
xor 1 0 = 1
xor 1 1 = 0
xor x y
| (even x) && (even y) = 2 * (xor p q)
| (even x) && (odd y) = 2 * (xor p q)+1
| (odd x) && (even y) = 2 * (xor p q)+1
| (odd x) && (odd y) = 2 * (xor p q)

where
p = x ‘div‘ 2
q = y ‘div‘ 2

Note: The first 4 lines may be replaced by using the following con-
ditional equation:

| x == 0 && y == 0 = 0

(b) We first compute h(n) = (g(2n), g(2n + 1)), using a scheme similar
to that for fibpair, given in the class notes.

h 0 = (0,1)
h n = (x+y,x)

where
(x,y) = h(n-1)

Then,

g(m)
| even m = fst(h(m ‘div‘ 2))
| odd m = snd(h(m ‘div‘ 2))

(c) g 0 = (f 0 == 0)
g (n+1) = (g n) && (f(n+1) == 0)

(d) power2new 0 = 1
power2new n
| even n = r * r
| odd n = r * r * 2

where r = power2new (n ‘div‘ 2)

3

