CS 337 Solution to Test 3 5/12/08

1. (Recursion and Induction)

(a) take :: Int > [a] —> [al
take 0 xs = [I
take n [] = [
take n (x:xs) = x : take (n-1) xs

(b) drop :: Int > [a] —> [al
drop 0 xs = Xs
drop n [] = [l
drop n (x:xs) = drop (n-1) xs

(c) suml xs = foldr (+) 0 xs -- suml computes the sum of a list
rowsum Xxss = map suml xss -- compute row sum of the matrix
matsum xss = suml (rowsum xss) -- compute sum of the whole matrix
listsum [] [] = [] -- listsum sums two lists element by element

listsum (x:xs) (y:ys) = (x+y): (listsum xs ys)

colsum [xs] = xs -- compute column sum of the matrix
colsum (xs: xss) = listsum xs (colsum xss)
(d) rank 1 [x] = x
rank i (x:xs)
| i <= n = rank i 1h
| i ==n+t1 =x
| i> n+1 = rank (i-n-1) rh
where
(1h,rh) = partition x xs
n = length(1h)
(e) ac :: [String] —> [String]
ac [1 =1

ac xss = acc [] xss

acc ys [1 =[]

acc ys (xs:xss) = (zs): (acc zs xss)
where zs = ys ++ xs



() -- (dist xs ys) is True iff Hamming distance between xs and ys is 1.
dist [1 [] = False
dist (x:xs) (y:ys)
| x ==y = dist xs ys
| x /=y = xs == ys

-- hamming xss yss is True iff

-- the hamming distance between each pair of

-- corresponding elements of xss and yss is 1.

hamming [] [] = True

hamming (xs:xss) (ys:yss) = (dist xs ys) && (hamming xss yss)

-- adj xss is True iff all adjacent pairs of strings in xss
-- have Hamming distance of 1.

adj :: [String] -> Bool

adj xss = hamming xss (right_rotate xss)

2. (String Searching; 20 points)
(a) We have to show that ¢/(Z,0) = Z,_;0. Proof is by induction on j.

e j = 1: We have to show that ¢(Z,0) = Z,_10, for n > 1. This
follows from: (1) Z,,—10 is both a prefix and a suffix of Z,0, and (2)
the only longer proper prefix of Z,,0 is Z,,, which is not a suffix.

e j+1: Assume ¢/(Z,0) = Z,_;0, where j < n. We show that
Cj+1(Zn0) = n,j,l().
Ad+1(Z,0)
= {definition of ¢/*1}
c(¢?(2,0))
= {induction hypothesis}
C(Zn_j())
{from the first proof}
Zn,j,10
(b) Suppose p[0..k] is the core. From the definition of core,

p[0..k] = p[12 — k..12]. Hence,
pli] = p[12 = k + ]

Letting 1 = 3 and 12 — k + ¢ = 5, we get kK = 10. That is, if £ = 10,
p[3] = p[5]. Since p[3] # p[5], k # 10. Similarly, using the fact that
p[3] # pl9], we get k # 6. And, from p[5] # p[9], we get k # 8. Thus,
the length of the core is not 6, 8 or 10.

(c) Choose ¢ and make one pass over the genome sequence to compute
val(p) = pmod ¢ for all substrings p of length 20 and less. Enter
each val(p) in a hash table along with a pointer to the part of the
genome sequence where p is a substring. To match a pattern r of



length less than or equal to 20, compute val(r) and look it up in
the hash table. For all occurrences of this value, match the pattern
against the corresponding substring in the genome sequence.

For a pattern of length more than 20, let r be its prefix of length 20.
Follow the same steps, as above.

3. (Relational Algebra; 10 points)

()

The names of theatres which are showing PG movies in which Will
Smith is acting, is given by

T Theatre (UpAq <R > T>)

where

pis Actor = Will Smith
q is Rating = PG

Consider relations R and S in Table 1. Each relation has two at-
tributes, and just one tuple.

Title Actor
R | Men in Black Will Smith

S ‘ Men in Black Tommy Lee Jones

Table 1: Two relations

Take attribute a to be Title. Now, RN S is empty, so m,(R N S) is
also empty. However, 7,(R) and 7,(S) both have a single row (and
single column) with the entry “Men in Black”. So, 7, (R) N e (S)
has one row.



