Open book and notes. Max points = 75 Time = 75 min Do all questions. - 1. (Recursion and Induction; 45 points) - (a) (4 points) Define function take where take n xs is a list containing the first n items of list xs in order, where n is a natural number. If n exceeds the length of xs then the entire list xs is returned. - (b) (4 points) Define function drop where $$xs = (take n xs) ++ (drop n xs)$$ Recall: ++ concatenates two lists. (c) (9 points) A matrix of integers is represented as a list of lists where each component list is a row of the matrix. Thus, the matrix in Table 1 > 1 6 Table 1: Matrix is represented by [[3,7,4],[2,1,9],[1,2,4],[0,6,2]]. Assume that the matrix is not empty, so no row or column is empty. Write functions to compute: (1) a list of row sums, [14, 12, 7, 8] for this example, (2) the sum of all the matrix elements, 41 in this case, and (3) a list of column sums, [6, 16, 19] in this case. You may have to write auxiliary functions. Use map and foldr lib- (d) (10 points) You are asked to find the i^{th} value in rank order in a given list of n integers, n > 0. Assume that $1 \le i \le n$. For example, given the list [31,34,22,3,19,5,20,6], its sorted version is [3,5,6,19,20,22,31,34]. For i=1, the value is 3, for i=2, the value is 5, for i = 5, the value is 20, etc. To find the i^{th} value, you don't need to sort the list. You can use function partition, given in Page 151 in the class notes. Given a list (x:xs), partition xs into lh and rh using x for v in function partition. If the length of lh is greater than or equal to i, look for the i^{th} value in lh, otherwise, find the suitable value as x or in rh. Define function rank i xs. Use function partition (you don't have to rewrite it). You can get the length of a list using Haskell function length. Assume that the list elements are distinct. - (e) (9 points) You are given a list xs of strings. Write a function to produce a list of strings ys, of the same length as xs, where the ith string of ys is the concatenation of all strings of xs up to and including the ith one. Thus, given that xs is [''this'', ''is'', ''cute''], ys is [''this'', ''thisiscute'']. Use ++ for list (string) concatenation. - (f) (9 points) You are given a list xs of bit strings, all of the same length. Write a function to output True iff all adjacent pairs of strings have Hamming distance of 1. Consider the first and last strings of xs to be adjacent. Thus, ["00", "01", "11", "10"] should produce True and ["00", "01", "10", "11"] produces False. For input [], output True. Hint: You may use the function right_rotate that rotates a list to the right by one position. This function is defined in Page 145 of the notes. Just use the function, don't reproduce it. ## 2. (String Searching; 20 points) - (a) (Core Computation; 8 points) Let Z_i be the alternating binary string $\overbrace{0101\cdots01}^{2i}$ of length 2i (i.e., i pairs of 01). Thus, Z_4 is 01010101. Show that $c^j(Z_n0) = Z_{n-j}0$, where c denotes the core function, and $1 \le j \le n$. That is, $c^1(Z_40) = c(010101010) = 0101010 = Z_30$, and $c^3(Z_40) = c^2(c(010101010)) = c^2(0101010) = c(c(0101010)) = c(01010) = 010 = Z_10$. - (b) (Core Computation; 6 points) Consider string p[0..12] where p[3], p[5] and p[9] are all different symbols. What can you say about the length of the core? - (c) (Rabin-Karp algorithm; 6 points) We are given a very long genome sequence. This string will be repeatedly searched with patterns of small lengths, say of lengths about 20. How can we apply the Rabin-Karp algorithm effectively? There are several possible approaches; any good one will do. Explain your algorithm in no more than 5 sentences. ## 3. (Relational Algebra; 10 points) - (a) (5 points) Let the Tables 6.1 (page 170), 6.4 (page 172) and 6.5 (page 173) in your notes be denoted by relations R, S and T, respectively. Write a query to find the names of theatres which are showing PG movies in which Will Smith is acting. You don't have to simplify or compute the value of the query. - (b) (5 points) Show that for arbitrary relations R, S, and attribute a, $\pi_a(R \cap S) = \pi_a(R) \cap \pi_a(S)$ does not necessarily hold.