
CS 337 Solution to Test 1 4/6/09

1. (Finite State Machine Design)

(a) See Figure 1.

0
0

11

10 0
1

{0,1}
0

1

Figure 1: Binary string without 3 consecutive identical symbols

(b) See Figure 2.

1

2

3

4 5

r a r

er

A−{r}

A−{r}

a

r

A
A−{r,a,e}

A−{r,a}

Figure 2: accept if input contains “rare”

2. (Reasoning about Finite State Machines)

(a) See Figure 3.

a/a

a/
0 1

Figure 3: output every other symbol

(b) For arbitrary symbols a and b, and string x

f(ε) = ε, f(a) = a, f(abx) = af(x)

(c) Let evenl(x) denote that the length of x is even. Associate predicates
p0 and p1 with states 0 and 1, where

p0 ≡ evenl(x) ∧ y = f(x)
p1 ≡ ¬evenl(x) ∧ y = f(x)

1



(d) evenl(ε) ∧ ε = f(ε)
¬evenl(x) ∧ y = f(x) ⇒ evenl(xa) ∧ y = f(xa), for all a
evenl(x) ∧ y = f(x) ⇒ ¬evenl(xa) ∧ ya = f(xa), for all a

3. (Writing Recursive Programs)

(a) grade [] = ([],[],[])
grade((name,score): xs)
| score >= 90 = ((name:a),b, c)
| score >= 80 = (a,(name:b), c)
| otherwise = (a,b, (name:c))

where (a,b,c) = grade xs

(b) suffix [] = [[]]
suffix (x:xs) = (x:xs):(suffix xs)

(c) cart1 x [] = []
cart1 x (y:ys) = (x,y) : (cart1 x ys)

cart [] ys = []
cart (x:xs) ys = (cart1 x ys) ++ (cart xs ys)

(d) We define function scan that has three arguments: (1) the part of
the string that has already been scanned, call it left, (2) the left
paren count − the right paren count over left, call it n, and (3) the
part of the string that remains to be scanned, call it right. Function
scan returns True iff left ++ right is balanced.
Then, balanced xs = scan [] 0 xs.
In defining scan we will ensure that n is non-negative. The function
is easy to write:

scan left n "" = n == 0
scan left 0 (’)’:xs) = False
scan left n (’)’:xs) = scan (left ++ ")") (n-1) xs
scan left n (’(’:xs) = scan (left ++ "(") (n+1) xs

Now observe that left is used only in computing its own next value;
it does not affect the other two arguments in the last two clauses,
nor the result in the first two clauses. So, we can eliminate left
altogether.

scan n "" = n == 0
scan 0 (’)’:xs) = False
scan n (’)’:xs) = scan (n-1) xs
scan n (’(’:xs) = scan (n+1) xs

Then,

balanced xs = scan 0 xs

2



4. (Properties of Recursive programs) The proof of rr(lr xs) = xs is by
case discrimination, xs = [] and xs 6= []. Note that we never employ
an inductive hypothesis; all induction are buried in the given facts (0–3).

• xs = []:
We have to show: rr(lr []) = []

rr(lr [])
= {lr [] = []}

rr []
= {rr [] = []}

[]

• Input list is non-empty:

We have to show rr(lr (x:xs)) = (x:xs)

rr(lr (x:xs))
= {from definition of lr, lr (x:xs) = xs ++ [x] }

rr(xs ++ [x])
= {definition of rr}

y:(rev ys) where y:ys = rev (xs ++ [x])
= {from given fact (2): rev (xs ++ [x]) = (rev [x]) ++ (rev xs)}

y:(rev ys) where y:ys = (rev [x]) ++ (rev xs)
= {from given fact (0): rev [x] = [x]}

y:(rev ys) where y:ys = [x] ++ (rev xs)
= {from given fact (3): [x] ++ (rev xs) = x:(rev xs)}

y:(rev ys) where y:ys = x:(rev xs)
= {substituting for y and ys}

x:(rev(rev xs))
= {from given fact (1): rev(rev xs) = xs}

x:xs

3


