

1. (Finite State Machine Design)

(a) See Figure 1.

Figure 1: Binary string without 3 consecutive identical symbols

(b) See Figure 2.

Figure 2: accept if input contains “rare”

2. (Reasoning about Finite State Machines)

(a) See Figure 3.

Figure 3: output every other symbol

(b) For arbitrary symbols a and b , and string x

$$f(\epsilon) = \epsilon, f(a) = a, f(abx) = af(x)$$

(c) Let $evenl(x)$ denote that the length of x is even. Associate predicates p_0 and p_1 with states 0 and 1, where

$$\begin{aligned} p_0 &\equiv evenl(x) \wedge y = f(x) \\ p_1 &\equiv \neg evenl(x) \wedge y = f(x) \end{aligned}$$

(d) $\text{evenl}(\epsilon) \wedge \epsilon = f(\epsilon)$
 $\neg \text{evenl}(x) \wedge y = f(x) \Rightarrow \text{evenl}(xa) \wedge y = f(xa)$, for all a
 $\text{evenl}(x) \wedge y = f(x) \Rightarrow \neg \text{evenl}(xa) \wedge ya = f(xa)$, for all a

3. (Writing Recursive Programs)

(a) $\text{grade} [] = ([] , [] , [])$
 $\text{grade}((\text{name}, \text{score}): \text{xs})$
 $\quad | \text{ score} \geq 90 = ((\text{name}:a), b, c)$
 $\quad | \text{ score} \geq 80 = (a, (\text{name}:b), c)$
 $\quad | \text{ otherwise} = (a, b, (\text{name}:c))$
 $\quad \quad \text{where } (a, b, c) = \text{grade } \text{xs}$

(b) $\text{suffix} [] = []$
 $\text{suffix} (\text{x}: \text{xs}) = (\text{x}: \text{xs}) : (\text{suffix } \text{xs})$

(c) $\text{cart1 } \text{x} [] = []$
 $\text{cart1 } \text{x} (\text{y}: \text{ys}) = (\text{x}, \text{y}) : (\text{cart1 } \text{x} \text{ ys})$

$\text{cart} [] \text{ ys} = []$
 $\text{cart} (\text{x}: \text{xs}) \text{ ys} = (\text{cart1 } \text{x} \text{ ys}) ++ (\text{cart } \text{xs} \text{ ys})$

(d) We define function `scan` that has three arguments: (1) the part of the string that has already been scanned, call it `left`, (2) the left paren count – the right paren count over `left`, call it `n`, and (3) the part of the string that remains to be scanned, call it `right`. Function `scan` returns True iff `left ++ right` is balanced.
Then, `balanced xs = scan [] 0 xs`.

In defining `scan` we will ensure that `n` is non-negative. The function is easy to write:

```
scan left n ""      = n == 0
scan left 0 (')':xs) = False
scan left n (')':xs) = scan (left ++ ")") (n-1) xs
scan left n ('('':xs) = scan (left ++ "(") (n+1) xs
```

Now observe that `left` is used only in computing its own next value; it does not affect the other two arguments in the last two clauses, nor the result in the first two clauses. So, we can eliminate `left` altogether.

```
scan n ""      = n == 0
scan 0 (')':xs) = False
scan n (')':xs) = scan (n-1) xs
scan n ('('':xs) = scan (n+1) xs
```

Then,

```
balanced xs = scan 0 xs
```

4. (Properties of Recursive programs) The proof of $rr(lr\ xs) = xs$ is by case discrimination, $xs = []$ and $xs \neq []$. Note that we never employ an inductive hypothesis; all induction are buried in the given facts (0-3).

• $xs = []$:

We have to show: $rr(lr\ []) = []$

$$\begin{aligned}
 & rr(lr\ []) \\
 = & \{lr\ [] = []\} \\
 & rr\ [] \\
 = & \{rr\ [] = []\} \\
 & []
 \end{aligned}$$

• Input list is non-empty:

We have to show $rr(lr\ (x:xs)) = (x:xs)$

$$\begin{aligned}
 & rr(lr\ (x:xs)) \\
 = & \{\text{from definition of } lr, lr\ (x:xs) = xs \uparrow\uparrow [x]\} \\
 & rr(xs \uparrow\uparrow [x]) \\
 = & \{\text{definition of } rr\} \\
 & y:(rev\ ys) \text{ where } y:ys = rev\ (xs \uparrow\uparrow [x]) \\
 = & \{\text{from given fact (2): } rev\ (xs \uparrow\uparrow [x]) = (rev\ [x]) \uparrow\uparrow (rev\ xs)\} \\
 & y:(rev\ ys) \text{ where } y:ys = (rev\ [x]) \uparrow\uparrow (rev\ xs) \\
 = & \{\text{from given fact (0): } rev\ [x] = [x]\} \\
 & y:(rev\ ys) \text{ where } y:ys = [x] \uparrow\uparrow (rev\ xs) \\
 = & \{\text{from given fact (3): } [x] \uparrow\uparrow (rev\ xs) = x:(rev\ xs)\} \\
 & y:(rev\ ys) \text{ where } y:ys = x:(rev\ xs) \\
 = & \{\text{substituting for } y \text{ and } ys\} \\
 & x:(rev(rev\ xs)) \\
 = & \{\text{from given fact (1): } rev(rev\ xs) = xs\} \\
 & x:xs
 \end{aligned}$$