CS 337 Solution to Test 1 4/6/09

1. (Finite State Machine Design)

(a) See Figure 1.

Figure 1: Binary string without 3 consecutive identical symbols

(b) See Figure 2.

Figure 2: accept if input contains “rare”

2. (Reasoning about Finite State Machines)
(a) See Figure 3.

Figure 3: output every other symbol

(b) For arbitrary symbols a and b, and string z
f(e) =€ fla) = a, f(abr) = af(x)
(¢) Let evenl(z) denote that the length of x is even. Associate predicates
po and p; with states 0 and 1, where
evenl(z) N y= f(z)
—evenl(z) N y= f(x)

DPo
D1



(d) evenl(e) N e= f(e)

—evenl(z) N y= f(z) = evenl(za) A y (za), for all a
evenl(z) N y= f(x) = —evenl(za) N ya = f(zxa), for all a

3. (Writing Recursive Programs)
(a) grade [1 = ([1,01,01)

grade ((name,score): xs)
| score >= 90 = ((name:a),b, c)
| score >= 80 (a, (name:b), c)
| otherwise = (a,b, (name:c))
where (a,b,c) = grade xs

(b) suffix [1 = [[1]
suffix (x:xs) = (x:xs):(suffix xs)

(c) cartl x [1 = []
cartl x (y:ys) = (x,y) : (cartl x ys)

cart [1 ys = []
cart (x:xs) ys = (cartl x ys) ++ (cart xs ys)

(d) We define function scan that has three arguments: (1) the part of
the string that has already been scanned, call it left, (2) the left
paren count — the right paren count over left, call it n, and (3) the
part of the string that remains to be scanned, call it right. Function
scan returns True iff left ++ right is balanced.

Then, balanced xs = scan [] 0 xs.

In defining scan we will ensure that n is non-negative. The function
is easy to write:

scan left n "" =n ==

scan left 0 (’)’:xs) = False

scan left n (’)’:xs) = scan (left ++ ")") (n-1) xs
n

scan left (’(’:xs) = scan (left ++ "(") (n+1) xs

Now observe that 1left is used only in computing its own next value;
it does not affect the other two arguments in the last two clauses,
nor the result in the first two clauses. So, we can eliminate left
altogether.

scan n "" =n ==
scan 0 (’)’:xs) False
scan n (’)’:xs) scan (n-1) xs
scan n (’(’:xs) scan (n+1) xs

Then,

balanced xs = scan 0 xs



4. (Properties of Recursive programs) The proof of rr(lr xs) = xs is by
case discrimination, xs = [] and xs # []. Note that we never employ
an inductive hypothesis; all induction are buried in the given facts (0-3).

exs = []:
We have to show: rr(1r [1) = []

rr(lr [1)
= {1r 0 = [1}
rr []
= {rr [0 = [1}
N

e Input list is non-empty:

We have to show rr(1r (x:xs)) = (x:xs)

rr(lr (x:xs))
= {from definition of 1r, 1r (x:xs) = xs ++ [x] }
rr(xs ++ [x])
= {definition of rr}
y: (rev ys) where y:ys = rev (xs ++ [x])
= {from given fact (2): rev (xs ++ [x]) = (rev [x]) ++ (rev xs)}
y: (rev ys) where y:ys = (rev [x]) ++ (rev xs)
= {from given fact (0): rev [x] = [x]}
y: (rev ys) where y:ys = [x] ++ (rev xs)
= {from given fact (3): [x] ++ (rev xs) = x:(rev xs)}
y:(rev ys) where y:ys = x:(rev xs)
= {substituting for y and ys}
x: (rev(rev xs))
= {from given fact (1): rev(rev xs) = xs}
X:XS



