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1 Introduction

Introduce self, TA.

Go over the handout.

What is this course about?
No programming.

Why is this material is useful?

How to study for it?

N o o M 0 PR

How | teach?

2 Preliminary Material

Reading Assignment, Homework Read Rosen 1.4, 1.5,1.6
Homeworks:

1.4:7,8, 10,13, 15, 22, 25

1.5: 35, 37, 40, 44

1.6: 24, 26, 27, 35, 38

2.1 Sets

2.1.1 Set Enumeration, Comprehension

{cat,dog, pig}, {3,5,7},{0,1,2,...}.

Order is unimportant.

Repetition is irrelevant.

We restrict our set elements to mathematical objects.
Element types could be mixed3, {3,5},7}

Set equality: Note that & {3}.

¢ Definition throughEnumeration
Roman Alphabet, Arabic Numerals, Pascal Keywords.

e Definition throughComprehensian{z| conditions onc}.
All integers between 0 and 1§x| 0 < = < 10}.

All even integers between 0 and 10t| 0 < = < 10 A evenz}, or explicitly
{0,2,4,6,8,10}.

All even integers{z| evenz}. Infinite set.
All integers that are even and odflz| evenz A oddz}.
Some important sets: integers , naturals, positive integers, negative integers, reals,

rationals.
Empty set: written ag. Note¢ # {¢}.



Set membership written asx € S.
3e{3,{3,5},7}.
{3,5} € {3, {3,5}, 7}

Cardinality of S, written as|S|:
{2} =1, [6] = 0, [{2| 0 <z <10}[ =11
What is the cardinality of naturals?

Subset

naturalsC integers,

$pC S5, 5CS,

SCT,TCS = S=T

SCT,TCU = SCU

S CT,S,T finite= cardinality ofS < cardinality of7".

Powerset Powerset ofS is the set of all subsets &f.
ForS = {0,1, 2}, the powerset is,
{3, {0}, {1}, {2}, {0, 1},{0, 2}, {1,2},{0, 1, 2} }.

What is the powerset? {{}}.
The cardinality of the powerset ¢fis 25/, Check for.
Show the connection between subsets @it strings.

2.1.2 Operations on Sets
e Union ComputeS U T where

S ={0,1,2} andT = {3,4},
S =1{0,1,2} andT = {2, 3,4},
S =1{0,1,2} andT = {0}.

NUZ=ZSU¢=S,5US=85.

U is not quite like the plus on integers; you can't cancel:
S UT =T does not mean that = ¢.
Formally,x € SUT meanst € Sorxz € T.

Note:SCT = SUT=T.

e Intersection ComputeS N T where

{0,1,2} andT = {2, 3,4},
{0,1,2} andT = {0},
{0,1,2} andT = {3,4}.

S
S
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SNg=¢,SNS=2S5.
Formally,x € SNT meansr € S andx € T.

Note:

SNTCSCSUT.
SCT = SNT=25.

Two sets aralisjoint if their intersection is empty; i.e., they have no common
element.

Difference S — T ={z|z € SN = ¢ T}.

{2,3} — {1,0} = {2,3}.

Compute:(({0,1,2} U{1,3,4}) — {3}) N {1, 2, 3}. Answer is{1, 2}.

Note:S —¢=S5,5CT = S—-T =¢.

Note: S — T'may be different froni” — S.

Complement

Given a universal sef is the set of elements not ii. Let integers be the
universal set; thervens = odd.

Facts about set operations

Binary Operators
Commutative: +x, min, max, xor(addition mod 2), lowest-common-ancestor
of a pair of nodes in a tree.

Operators that are not commutative: subtraction, division

Associative: +x, min, max, xor(addition mod 2), String Concatenation, Matrix
Product; Function Composition; “;” in C++, lowest-common-ancestor of a pair
of nodes in a tree.

Note: No paranthesis needed when writing a chain of associative operations.
Operators that are not associative: subtraction.

Operators that are commutative but not associative:
2 ®y = (z+y)/2. Note that® is commutative.
o4 ®2=202=2,00402) =083 =1.5.

Operators that are not commutative but associative: string concatenation, Matrix
product, Function Composition.

U, N are commutative and associative.
SNS=¢, SUS=U.
SU(TNR)=(SUT)N(SUR),
SN(TUR)=(SNT)U(SNR),
Contrast witha x (b + ¢).



2.2

Mention Venn diagrams.

Cartesian Products
Ordered pairs: (name, telephone)
Tuples,n-tuples.

Note: tuples are different from sets; order matters and the same element may
appear several times in a tuple.

SxT=A{(x,y)lreS NyeT}.

{07 1} X {1} = {(07 1)7 (17 1)}
(0,1} x {2,3}?

Cartesian product is not commutative x 17" may be different fron¥” x S.
Cartesian product is associative.

Compute{0,1} x {1,2} x {2,0}.

Given finite setsS, T', |S x T'| = |S| x |T).

Cartesian product can be shown as a matrix.

Function

A mapping fromS to T'. Either or both ofS, T" may be infinite. We writef : S — T
for a function with domairt and range (or codomair).

Example:ha : {ant, cow, cat, pig, dog — {T, F}.

ha(ant) = T,ha(cow) = F,ha(cat) = T,ha(pig) = F, ha(dog) = F.

Note: Every point in the domain maps to some point in the range.

1.
2.

3.

Onto/surjective: covers the whole range. Note thais onto.

one-to-onelinjective: each element in the range is mapped to by at most one
element.f(z) = f(y) = « = y. ha is not one-to-one.

one-to-one and onto (or, bijective): both properties.

Let S be some set and id is the identity function. Show it is bijective.

LetS ={0,1,2}. Letf : S — Swheref(z) = x+1 mod 3. Thenf is bijective.
Let f be the successor function on the set of naturalg.dgective?

Letf: R — Z,wheref(z) is the largest integer not exceedingls f onto?

Show a function that is one-to-one but not onto.
Show a function that is onto but not one-to-one.
Show a function that is both.
Show a function that is neither.
Show a mapping that is not a function.
Giventhatf : S — T, what is the relationship betwegsi| and|T'|? What if f is
onto, one-to-one or bijective?



Function Composition (f o g)(z) is f(g(z)). Thus, f o g is a function provided
g:R — Sandf:S — T.Then,fog: R — T. Similarly definef o g o h. Often
we write fg in place off o g.

R ‘
EH-,,@
g

Figure 1: Compositions of, g

Givenf : S — S, write f2 for f o f.
LetS ={0,1,2}. Letf: S — Swheref(z) =z + 1 mod 3.
What is f2, f3?

Function composition is associative but not commutative.
Problem (Very Hard);f is a function from naturals to naturals. Suppgéén) <
f(n+ 1), for all naturalse. show thatf is the identity function.

Function Inverse For a bijective functiory, there is a functiom, such thatfg = id.
That is if f(a) = b theng(b) = a. We sayy is the inverse off, and writef~! for g.
The inverse off is written asf 1.

Lfft=f"f=id
2. f7V = f
3. (fo)t =g f!

Suppose every person has a single wife, then does every woman have a (single)
husband?
Why doesf not have an inverse if it is not bijective?

2.3 Relation

Reading Assignment, Homework Read Rosen: 6.1, 6.5, 6.6

Home work:

Graph of a function: Consider the following function,
f:{0,1,2,3,4} — {0,1,2,3,4}; wheref(z) = 2% mod 5.

We can depict the function by the following graph.
In this picture there is exactly one outgoing arrow from each node. (Note that not all
nodes have incoming arrows, and some have more than one incoming arrow). Relation
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Figure 2: Graph of a Function

T

)

Figure 3: Graph of a Relation

is a generalization of function; there are multiple or zero incoming/outgoing arrows
to/from a node.
The arrows in Figure 3 can be represented by

{(a,0), (a,¢), (a,d), (¢,e), (d, d), (d, ), (¢, a), (¢,d)}.

This is a subset ofa, b, ¢, d, e} x {a,b,c,d,e}.

In general, a relation is a subset®fx T'; such a relation is called a relation from
S toT. A binary relation overS is a subset of x S. Here is an example of a more
general relation.

John ——  CS336

Mar Music 101
Sue CS353
Jack Spanish 102

Figure 4: A general relation

Suppose you are given some facts about who knows who in USA. How many in-
termediate persons are in the chain between you and Bill Gates?

Depict the “knows” in a picture.

Given two items either the relation holds or does not hold between them. Its result
is a booleanu is not a relation.

Some common relations:



you

Figure 5: “knows” Relation

S | T | Name of Relation| Example |
People| People knows Misra knows Gates
People| People Brother John is Jack’s brothe,
People| things owns John owns a Ford
People| Tel. No. has Misra has 471-9550

Mathematical Exampless, <, =, #, >, > on reals.
divides on integers

equals (mod 3) over integers

substring over strings

member over elements and sets.

Every function is a relationf : S — T isthe subsef(z, F(z))| z € S} of sx T.

Not every relation is a function.

For binary relations, we write them in infix style:
3 < 5,1 € {1,2}, etc. In prolog you may writénows(Misra, Bill).

Upper and lower bounds$:is an upper bound af, y if x < b andy < b.
Least upper bound, greatest lower bourds a least upper bound of, y if it is an
upper bound and it is the smallest such, i.e., for any upper bbofd, y, ¢ < b.

The least upper bound may not always existz K& b means thab is an ancestor

of x then for siblingse, y, both father and mother are least upper bounds.

Show that if a least upper bound exists, it is unique.

Special kinds of relations

e Reflexive:z < z, x dividesz, s substrings, p C p, p = p, x = x, s rotations.
Not reflexive: brotherg, €, #.

e Symmetric: brother relation over boys, #, =, disjoint (setse, y are disjoint if
x Ny = ¢), equals (mod 3).
Not symmetric: brother relation over siblings;, substring, divides<.



e Transitive:<, <,=,>,>onrealsC, =, divides,equals (mod 3).
Is “sibling” transitive? No.
Not transitive: “father of"x = y + 1, knows, .

Exercise: Show relations that are
reflexive, symmetric but not transitive
reflexive, transitive but not symmetric
symmetric, transitive but not reflexive.

Solution to the last problem: Over the set of integers defiRg by = x y is odd.
The relation is symmetric becausd®y = bothz andy are odd. It is transitive,
by the same argument. HowevaRz does not hold it is even.

e Equivalence: Reflexive, symmetric and transitive:
=, =, equals (mod 3), rotation.

Problem: Letf be a string of lengthV. It is required to decide if all cyclic rota-
tions of f are distinct, i.e., check {¥i,7 : 0 <i < N, 0<j < N,i#j: fi# f.j),
wheref.i is the left rotation off by i positions. (see /Notes.dir/CyclicEquivalence.tex).

We can depict a binary relation pictorially by a graph. What is the structure of the
graph if the relation is reflexive, symmetric or transitive?

What is the structure of the graph if the relation is an equivalence relation?

Example:z is afellow-ofy if they are citizens of the same country. This partitions
the set of people.

Places that are in the same time zone. How many partitions? Thus, we can store
this more efficiently:

GMT: London, Greenwich, ...
GMT+1: Amsterdam, Frankfurt, Brussels ..
GMT-6: Austin, Dallas, Chicago, ...

Connectivity: Road network after a typhoon, Computer network after a global
crash.

Infinite number of equivalence classesx y for stringsz, y if they have the same
number of 1’s.

0 1's: 0, 00, 000, 0000, ...

11's: 1,01, 001, 10, 100, 1000, .., 00100, ...

21's:11,101, 110, ...

Equivalence relation over infinite binary strings: For infinite binary stringady
write x ~ y if z andy differ only in a finite number of corresponding positions (i.e.,
x; = 1y;, for almost alli). Show that~ is an equivalence relation. Is the number of
equivalence classes finite or infinite?



Solution to the Second Part: The number of equivalence classes is infinite! Let
be the string which hag’ zeroes followed by’ ones. Then’ andz’, wherei # j,
differ in infinite number positions; the argument is as follows. Assudme j. In a
block of length27, wherez’ is all Os or all 1sz* has an equal number of Os and 1s.
Therefore,z* andz? differ in exactly half the positions in that block. Since there are
an infinite number of blocks, they differ in infinite number of positions. So, each
belongs to a distinct class.

Permutations: for strings, y, = y if one is a permutation of the other:
abc =~ cba.

Games Consider & x 2 square in which there are 3 tiles named, c. One of the
squares is unoccupied; here shownbyA tile can move horizontally or vertically to
an unoccupied square. Can you reach every square from every other square?

A A

Show that the transitive closure of the relation is an equivalence relation.

The story of the 15-puzzle.

Rubik’s cube.

A baby is shown on the German TV to solve the puzzle in no time. Exploit sym-
metry.

Exercise: Is the intersection of two equivalence relations an equivalence relation?
What about their union and product? Is the complement of an equivalence relation an
equivalence relation?

The product of two equivalence relations is not an equivalence relation. Consider
integers 1 through 5 as the domain of the relations. Let equivalence relatartss
be given by:

[2/2] = [y/2]
lz/2] = ly/2]

You can showl (r x s)3and3 (r x s)5. Butl (r x s) 5 does not hold.

Ty
TSy

2.4 Partial Order

Consider the prerequisite structure in CS. | show a small portion below.

The prerequisites need to be acyclic. A special kind of relation: reflexive, antisym-
metric, transitive. Why does this gurantee acyclicity?

Example: <, divides,C on2°. ForS = {a,b,c}, see the relationship below; we
have not drawn all the edges.

SetS is partially-orderedwrt < if ...

Two items are comparable/incomparable.

Examples: Secure information flow: < y meansz knows a subset of what
knows. That isy tells everything it knows tg.

Choose between car models: criteria are price, performance, color.
(a,b) < (c,d) meansy < cA b <d.

10



Figure 6: A Partial order

{ab,c}

{ab} {bc}

{d ? {c}

Figure 7: A Partial order

In real life, it is very difficult to find two entries where one dominates the other. To
choose, you have to order the various criteria. You may order price, performance, color
in this order. Color: pink< yellow < green< white.

Price | Performance Color |

23,000 8 Green
18,000 6 Yellow
18,000 7 pink

We are stuck with the pink car.

Exercise School children are taught about the primary and secondary colors using a
Venn diagram. Can you present the same material using partial orders? The primary
colors are: Red, Blue and Green. Mixture of Red and Blue produces Magenta, Red and
Green yields Yellow, Green and Blue gives Cyan, and the combination of all 3 colors
gives White.

Lexicographic Order Dictionary order. A set of n-tuples can be ordered as follows:

11



(a,b) < (c,d)=a<cV (a=cAb<d).

(a,b) < (¢,d) = (a,b) < (¢,d) V (a,b) = (¢,d). Thatis,

(a,b) < (c,d)=a<cV (a=cAb<d).

Decimal notation:213 < 221 < 300. We compare two numbers of differing
lengths by appending Os to the left of the shorter number, and then comparing them
lexicopraphically.

In the dictionary: Strings, ¢ are of different lengths. Truncate the longer strifg,
to the length of the shorter one, Call the truncated string.

t<s=t<s
s<t' =s<t
s=t=s<t

choice< choose< chosen.

Show that all strings can be totally ordered.

Total order: a partial order in which all pairs of items are comparable. Then, we
can put them in a line in order, because of transitivity. Lexicographic Order is total. So
is < over reals, but nof over sets.

Exercise You have a table of individuals in which each birthdate is recorded in
mm/dd/yy format. How will you create a table in the sequence of birthdates, i.e., from
the youngest to the oldest?

Partial Order over infinite sets: over subsets of naturals.

Exercise: Call an element of a set minimal if no element is smaller. Call an
element least if all elements are larger.

(1) sShow that minimal and least are different concepts, (2) give examples of both,
(3) show that every finite poset has a minimal element, though not necessarily a least
element.

Exercise Topological sort.

Exercise; The partial order over partitions Consider the set of equivalence rela-
tions over a seD. Each equivalence relation induces a partition older We may
order the partitions as follows: if a partitigncan be obtained from another partition

q by splitting some of its equivalence classes, then we sayptigfiner thang, and

q is coarserthanp. Explore the properties of this relation. Is there a finest/coarsest
partition? For any two partitions, is there a partition that is coarser (finer) than both?

3 Logic

Reading Assignment, Homework Read Rosen 1.1,1.2,1.3,3.1
Homeworks:

1.2: 8, 14, 18, 20, 24, 41

1.3: 26, 32, 38, 44,50

3.1: 4, 8,10, 12, 20, 26, 40, 46, 47

12



3.1 Introduction

Why do we need logic? From physics with pictures to calculus.

From commonsense reasoning to logic.

Need akin to use of algebra.

Find all numbers whose squares are equal to the number itself.

Informal reasoning: Since the square is non-negative the number is itself non-
negative. Clearly, O is a solution. From 0 to 1, the square is no greater than the number
itself (multiplying by z, 0 < = < 1 reduces any positive number). Thus no solu-
tion in the open intervg, 1]. Another solution isl. Beyond that multiplication by
increases a number; hence no more solutions.

Algebraic approach: Let the unknown beSolvexz? = z. thatis,z? —x = 0, or
x(x — 1) = 0. This has the solutions = 0 andz — 1 = 0.

3.2 A Proof Style

Proof Format The proof format shown below, due to W. H. J. Feijen, is a convenient
tool for writing detailed proofs. Let> denote any transitive relation (not necessarily
implication over predicates) over proof terms. A proof term may be a predicate, arith-
metic expression (in which case an arithmetic relation iker < is used in place of

=) or a property in Seuss logic. A proof pf= s may be structured as follows.

p

= {whyp =g}
q

= {whyg¢=r}
'

= {whyr = s}
S

3.2.1 A Property of Equivalence Relations

Let Ry, Ry be two equivalence relations on some set. Define a reldtiby

xRy = (xR1y) N (z Ray)
wherez, y are elements of that set. Show ttfats an equivalence relation.

R is reflexive:

rRx

= {definition of R}
rRix N xRyx

= {R;, being an equivalence relation, is reflexive. Similafy,}
true A true

= {logic}
true

13



R is symmetric:

Ry

= {definition of R}
xRy N xRsy

= {R;, being an equivalence relation, is symmetric. SimilaRy}
yRix N yRox

= {definition of R}
yRx

R is transitive:

TRy NyRz

= {definition of R}
(xRiy N xRoy) N (yR1z N yRs2)

= {rearranging the conjuncts
(xRiyNyRiz) AN(@Ryy AN yRa2)

= {R;, being an equivalence relation, is transitive. SimilaRy,}
T Riz N xRz

= {definition of R}
TRz

3.2.2 Lowest Common Ancestor

This example combines several notions: commutativity, associativity of binary oper-
ators, partial order and proofs. In a given treedet y denote the lowest common
ancestor of nodes, y. We show thaf is associative.

This result also applies to a partial order wheis the least upper bound. The least
upper bound may not always exist; when it exists it is unique.

Let = > x denote that is an ancestor of. We assume the following properties.

1. Property 12> is a partial order.

2. Property2z>zly=z>xNz>y.

Proposition1 [(z Ty) > z] A[(z Ty) > y].

[(zTy) =2l Al(zTy) >y
= {Letzin property 2 ber | y}
(z1y)>(zTy)
= {>isreflexive
true

Proposition 2 1 is commutative.
Proof: We have to show T y = vy T z. We only showzx T v > y T x; the other
inequality is similarly proven.

14



(z1y) > 1
{Property 2

[(Ty) zylAl(zTy) = 2]
{Proposition 2

true A true
{Prdicate Calculus

true

Associativity of T We show(z T y) T 2 > = 1 (y 1 2). The reverse inequality is
similarly proven.

Ty lz>271(y12)

= {Property 2
[Ty Tz=a]AllzTy)T2=>(yT2)]

= {Proposition 1 applied twicez T y) 1 z > (z T y) > «}
truen[(zTy) T2>(y12)

= {property ofA and Property 2
[Ty T2y A[@Ty)Tz2=2]

= {Proposition 1 applied twicez T y) 1 2 > (z T y) > y}
truen(z Ty) Tz 2> 2]

= {Similarly}
true

Exercise: Show that
L (z1z)==x
2. [(zza)AN(y=b)]=[xTy) = (alb)

3.3 Propositional Logic
3.3.1 Laws

We consider the following propositional operators(and),V (or), — (not), = (equiv-
alence), and= (implication). The equality operator (=) is defined over all domains.
Traditionally, it is written as= when applied to booleans; operatarhas the low-

est binding power among all logical operators whereas operator = has higher binding
power than all logical operators except negatioh (

e (Commutativity and Associativity),, vV, = are commutative and associative.
e (Ildempotence), Vv are idempotent:

pVp =p

pPAp =p

o (Distributivity) A, V distribute over each other:
pA(gVr) = (pAg)V(pAr)
pVighr) = (pvgA(pVr)

15



e (Absorption)
pA(PVQ)
pVI(pAq)

e (Expansion)
(pAg) vV (pA—q)
(pVa) A (pV—g)

e (Laws with Constants)

p
p

p
p

pAtrue = »p pAfalse = false
pVtrue = true pvfalse = »p
pV-p = true pA-p = false
pP=p = true p=-p = false
true=p = p p=false = -p

e (Double Negation)

oTp = p
e (De Morgan)
~(pAq) = (-pV—q)
~(pVa) = (7pA—q)
e (Implication operator)
p=q = (-pVa)
(p=4q) = (g= —p)

If (p = q) and(q = r) then(p = r), i.e.,
(p=aA(g=r)) = (p=r)

e (Equivalence)
(p=q) = (pN@)V(=pA—q)
(p=q) = (=9 N(g=Dp)
¢ (Monotonicity)
Letp = r. Then,
(pAg) = (rAq)
(pVag) = (rvaq)

Strengthening, Weakening Predicater strengthengor, is a strengthening ofj) if
r = p; thereforep A ¢ strengtheng. Similarly, » weakengor, is a weakening of) if
p = r; thereforep v ¢ weakeng.

Priorities of Operators The logical operators in the decreasing order of priorities
(binding powers) are+, =, A andV, =, =. Note that= and= have different priorities
though they have the same meaning when applied to boolean operands. Therefore,
pAgq = rAsisequivalenttey A (¢ =r) A swhereapAg = rAsis(pAg) = (rAs).
OperatorsA and VvV have the same priorities, so we use parentheses whenever there
is a possibility of ambiguity (as ip A ¢ vV r). To aid the reader in parsing logical
formulae visually, we often put extra whitespace around operators of lower priorities,
asinpAqg = rVs. We writex,y = m,n as an abbreviation far = m A y = n.

16



3.3.2 Applications of Propositional Logic
e Show that(p = q) = (—p = —q).

p=q

= {Double negatioh
~=(p=q)

= {~p=9)=(r=9}
~(-p=q)

= {commutativity of=}
—(¢ =-»)

= {-(r=s)=(-r=s)}
-q = p

= {commutativity of=}
-p=q

e For booleans, b, z, y, z it is given that
x=a ANb y=-a A —b z=[(z Vy) =1

Express: as a function ofi, b. Simplify your answer.

z

= {given}
(xVy =b

= {e=(a A b)y=(-a A —b)}
[(@ A b))V (ma A —b)] = b

= {simplify the term within square brackéts
(a =0 =b

= {rearrange ternjs
a=(b=b)

= {(b = b) =true}
a = true
{property of=}
a

e Showthalp =q] =[(p = q) A (¢ = p)].

[(p=a) A (a= p)]
= {rewriting implicatior}

[(=pV @) A (=g Vp)]
= {distributivity}

[(=pA=q) V(= Ap) V(g A —q) V(g Ap)]
= {Constant}

[(=p A —q) Vv (false) V (false) v (¢ A p)]
= {Simplify and rearrange

[((pAq)V (=p A —q)]
= {Property of Equivalence

P=q
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Russell's Paradox: LetS = {z|z ¢ z}. Thusz € S =z ¢ z.

SesS
= {From aboveé
S¢S

3.3.3 Playing with Exclusive Or

Exclusive or is the negation &f, thatis(z @ y) = =(z = y).
It is convenient to identiffalsewith 0 andtrue with 1.
rP0=z,2Pl=—2,2Px=0,2P~x=1.

@ is commutative, associative, and it has an identity elem®rar{d an inverseaf is
the inverse oft).

Example: Exchange registersh.
a:=a®b; b:=a®b; a:=adb.
The following program, in which is replaced by= also does the job.
a:=a=bb:=a=b;a:=a=h.

Examples of the use @b: Keeping a doubly linked list where each item has a single
link field.

Encryption, decryption.
The game of Nim

Consider a cycle o2™ numberszy, ... In each step replace every by x; & z;y1,
where+ in the subscript is modul@™. Let X; be the initial value ofz;. Show that
after2” stepsr; = X; & X, o+ Thus, eventually all numbers are zero.

Teaser Problem A cycle ha2” integerszg..z2»_1. In each step simultaneously for
all 4,

x; = |x; — x;41|, where arithmetic in the subscripts is modala Show that all
x eventually become 0.

Exercise Given predicates ands, show that the weakest solutionjan the follow-
ing formulae is(r A D) V (s A —b).

pAb = r
pA—-b = s

Thatis(r Ab) V (s A —b) satisfies the two formulae given above, and i§ any
solution theny = ((r Ab) V (s A —b)). Note that the strongest solution fois false

Solution: We first show thdt-Ab) V (sA—b) is a solution. Substituting-Ab) V (sA—b)
for p in the antecedent of the first formula:

18



((rAb) vV (sA—b) AD
(rAbAD) V (sAN-bAD)
rADb

4 mol

Substituting(r Ab) Vv (s A —b) for p in the antecedent of the second formula:

((rAD) V (s A=b)) A —b
(rAbA=b) V (s A—bA-D)
sA\—b

S

U

Next, we show thatr A b) V (s A —b) is as weak as any solution. That is for any
solutiong, ¢ = ((r ADb) V (s A —b)). So, we have to show

(((gAb) = ) A ((gh—b) = 5)) = (¢ = ((rAb) V (sA=b)))

The proof is as follows.

= {((ahc)=d) =
((qAD) = (rA
= {disjunction:{(q
q = ((rAb)

Exercise Let@® and® be binary boolean operators. We say thais adual of ® if
the following holds for allk: andy.
~(zoy) = (~r®-y)

Show that is a dual ofv.

Show that every binary boolean operator has a unique dual.

Show thatz is a dual of iff @ is a dual of®.

What is the dual o£?

a o w bdpoR

What is the dual o7

Solution
1. Use De Morgan'’s law.

2. The duakp of ® is uniquely defined by
(zey) = ~(rz®-y)
3. We have to show that

(z®y) = ~(~z®~y)
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The proof is as follows.

_\(_\m D ﬂy)
= {definition of &}
= {double negatioph
TRy

4. Writing ~ for the dual of=, we have

T~y

= {definition of dua}
~(~z = )

= {(rz=-y) = (z=y)}
—(z=vy)

Thus,~ is exclusive or.
5. Writing ~ for the dual of=-, we have

TRy
{definition of dua}
(- = —y)
{(z=-y) = (y=2)}
—(y = )
{expandingy = x)}
—(-y V)
{De Morgar}
Yy N\
{Rearranging termjs
T Ay

3.4 Quantification

Notation For every number there is a larger number. This is typically written as
Vz.Jy.y > x, orVax3dy.y > x.
We write:
(Vz :: there is a numbey larger thane), or
(Vz :: (3y :: y is larger thanc)), or
(Ve 2 By =y > x)).
To write this formula for natural numbers only:
(Vz : z natural : (Jy : y natural : y > x)).
Every even number at least 4 is a sum of two primes:
(Vz : xz even A z > 4 : there exist two primes that add upt{, or
(Vz:xzevenA x>4:(Jy,z:yprime A zprime : z =y + 2)).
We use quantification in writing arithmetic and boolean expressions. In all cases,
a quantified expression is of the following forf®z : ¢(x) : e(x)). Here,® is any
commutative, associative binary operatoeiis the boundvariable (or a list of bound
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variables),q(z) is a predicate that determines tlenge of the bound variables and
e(x) is an expression called th®dy A quantified expression in which the range is
implicit is written in the following form: (®z :: e(z)). We use other brackets in
addition to angular bracketg™and “)” to delimit the quantified expressions. Some
examples of quantified expressions are given below.

(+i: 0<i< N: Af]) (1)
Vi: 0<i<N: Ali] < Ali + 1)) @)
Vi,j: 0<Si<NAO<Sj<N Aij: Mij)=0) 3)
(mini: 0<i<N A (Vj: 0<j<N: M[i,j]=0): i) 4)
(maxp: p € P: pnext(t)) (5)

To evaluate a quantified expression: (1) compute all possible values of the bound
variablez that satisfy range predicatgz), (2) instantiate the body(x) with each
value computed in (1), and (3) combine the instantiated expressions in (2) using opera-
tor ®. In case the range is empty, the value of the expression is the unit element of op-
erator®; unit elements of some common operators are as given next, in parentheses fol-
lowing the operatori+ (0), x (1), A (true), V (false), = (true), min (+00), max (—o0)

The values of the example expressions are as follows. Expression (1) is the sum
of the array elementd 0], ..., A[N]. Expression (2) isrueiff A[0],...,A[N]are in
ascending order. Expression (3) has two bound variables; this boolean expression is
true iff all off-diagonal elements of matri®/[0..V, 0..N] are zero. Expression (4) is
the smallest-numbered row M all of whose elements are zero; if there is no such row
the expression evaluatesdo. Expression (5) is the maximum of allnext(t) where
pisinP.

Examples Assume that, y, z are integers in the following examples.
(Vx :: 2% > x) = false
(3z = 2% > x) = true.
(Ve:0<a2x<1:(Fy:y>0:y<uz))="false

For every pair of distinct integers there is an integer that falls between them:
Ve,y:x#y:(Fznar<z<y Vy<z<ax)),or
Ve,y:x<y:(Fzuxz<z<y)).

This evaluates tfalse

Matrix A[0..M,0..N] has a row of zeroes:
(3i:0<i< M :rowiisall zeroes, i.e.,
(Fi:0<i<M:(Vj:0<j<N:A[j]=0))

The index of the lowest row in matrid[0..A/, 0..N] that has ascending elements.
Assume there is such a row.

(mini: 0 <7< M :rowiis ascending, i.e.,

(mini: 0<i<M:(Vj:0<j<N:A[ijl<Ali,j+1])
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The number of non-zero elements in matdx
(+4,7:0<i<M AO<j<N A Afi,j]#0:1).

Free and Bound Variables The bound variables in a formula are explicitly declared,
as explained earlier. The remaining variablesfee We adopt the convention that a
formula isuniversally quantifieadver its free variables. Thus, read

z>2xly=z>2xANz>y tomean
Va,y,z: z>2axly=z>2axANz>y)
3.4.1 Laws of Predicate calculus

In quantified boolean expressions, we often use the existential quastifiet univer-
sal quantifiew in place ofv andA. The following are some of the useful identities.

e (Empty Range)

(Vi: false: b) = true
(Ji: false: by = false

e (Trading)
Mi:q:b) = (Vi qg=0)
(Fi:q:b) = (Fiz qgADb)

¢ (Move-out) Given that does not occur as a free variablepin

pV{¥i:q:b) = (Vi:q:pVD)
pA{(Ti: q: b (Fi: q: pADb)

e (De Morgan)

—(Fi:q: by = (Vi:q: b
—(Vi: q: b) i

|
—~
LU
<
=)
J
(=
~

¢ (Range weakening) Given that= ¢/,

(Vi:q:b) = (Vi:q:b)
(Fi:q: by = (Fi:q:0b)

e (Body weakening) Given that=- ',

(Vi:q:b)
(Fi:q: V)
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A number of identities can be derived from the trading rule (consult Gries and
Schneider [1, Chapter 9]); we show two below.

(Vi: gAr:b) = (VMi:qg:7=0)
(Fi: gAr:b) = (Fi:q: rAD)
The following duals of the move-out rule are valid iff ranges notfalse
pANi:q:b) = (Vi:q: pAD)
pV{Ti:q:b) = (Fi:q: pVh)

3.4.2 Laws with Arithmetic Relations

The usual arithmetic relations are: = > < # >. The first three are the only ones
needed; the others can be defined in terms of them as follows.

(z<y)=(x=yVvVa<y)
(r#y)=-(r=y)
(x>y)=(r=yVa>y)

The important properties of arithmetic relations are:

1. Forany two reals (or integers or rationats), we havelx < y)V(z = y)V(z >
Y).
. < and> are total orders.

. = is an equivalence relation.

. # is symmetric, but neither reflexive nor transitive.

o oA W

r<y=-(=y).
r>y=( <)

3.4.3 Exercises with Predicate Calculus

1. Show that
(Vi:qAr:B)issameasgVvi:q:r=10»),and
(Fi:gnr:b)issameasdi:q:rAb).
2. Are the following pairs equal?
(Vx : (Jy :: P(z,y))) and(Jy : (Vz :: P(z,vy))).
(Fz: (Jy :: P(x,y))) and(3y : (3z :: P(x,y))).
(Vz: (Vy :: P(x,y))) and(Vy : (Vz :: P(x,y))).
3. Prove that all of the following are equal, using De Morgan
=3z = (Vy :: P(z,y))),
(Vx = =(Vy == P(z,y)))
(Vz :: 3y = = P(z,9))).
SupposeP(z, y) is « lovesy. What do these sentences say?
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4. Why are the following not valid even wherdoes not namé?

pANMi:q:b)=(Vi:q:pAb)
pV(Fi:q:b)=(Fi:q:pVb)

Answer: For empty range:
pA(Vi:q:b)ispand(Vi:q:pAb)istrue. Therefore, ifp is falsethese two
are different.

Also, for empty range:
pV(Fi:q:b)ispand(3i:q:pVb)isfalse Therefore, ifp is true these two
are different.

5. Write the following statements formally.

(a) Every integer is bigger than some integer and smaller than some integer.
(b) There is no integer that is bigger than all integers.

(c) Forall nonzero integers there is a different integer having the same absolute
value. (Usdz| for the absolute value af.)

(d) No integer is both bigger and smaller than any integer.
Solutions:

@ (Va: zint
By: yint z > y)
AFz: zint z < 2)
)
(b) ~(3z: zint:
My : yint: z > y)
)
() Vx: zintAz#£0:
| Qy:yintAzFy: |zl =ly)

(d) ~(Fz: zint:
Hy:yintx>y A z<y)
6. Express the following. Given is a sgtand a binary relatior on it.

(@) = is reflexive,
(b) * is symmetric,
(c) x is transitive

Solution:

@ (Vz:zeS:xxx)
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Table 1: A Matrix with a saddle point

(b) Ve,y: z€S,yeS:x*xy=yx*x)
() (Va,y,z: z€S,ye S, zeS:(x*xy N yxz)=x%*2)
7. An itemx of a subset is amallestelement if for every elementin that subset

xx*y. Elementz of a subset isninimalin that subset if there is npin that subset
such thaty x . Express

(a) the smallest element 6fis unique,
(b) asmallest element &f is a minimal element of,
(c) every subset of, except the empty set, has a minimal element.

Solution: In the following,
x smallest in T stands forVy : y € T : x x y)
x minimal in T stands for-(Jy : y € T : y * x)

@ (Vu,v: ueS ves:
u smallest in S A v smallest in S = u = v)
(b) (Vu: we S:usmallestin S = wminimal in S)
C© WVI': TCSAT#¢:(Fu:ue T:uminimalinT))

3.4.4 An application: Saddle Point

Given is a matrixA of numbers. Henceforth, u range over the row indices andv

over the column indices. An entry of the matrix is calledaadle pointf it is the
largest in its ronandthe smallest in its column. We will derive an algorithm to deter-
mine if the matrix has a saddle point. In the following example the bottom left entry is
a saddle point. Are there any others?

Let
hi[u] = the largest entry in row, i.e, hi[u] = (max j :: Afu, j])
lo[v] = the smallest entry in columa i.e, lo[v] = (mini :: A[i,v])

Observation 1: From the definition o, lo, for all u, v,
lo[v] < Afu,v] < hilu).

Definition Afu, v] is a saddle point iff A[u, v] = hi[u] A Au,v] = lo[v]).

Observation 2 A[u, v] is a saddle point (hi[u] < lo[v]).
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Table 2:hi, lo values for the matrix in Table 1

hi[u] < lo[v]
{Observation }

(hifu] <lo[v]) A (lo[v] < Alu,v] < hi[u])
= {Predicate Calculys

Alu, v] = hi[u] A Alu, v] = lo[v]
{Definition of saddle poirjt

Alu, v] is a saddle point

The matrix has a saddle point(Bu,v :: Afu,v] is a saddle point). Calculation
shows:

(Ju,v :: Alu,v] is a saddle point)
{Observation 2
(Fu, v :: hifu] < lo[v])
= {Arithmetic}
(minw :: hifu]) < (maxwv :: lo[v])

We now have an algorithm to detect if a matrix has a saddle point; compute the
largest element of each row and the smallest of each column; check if the smallest
among the former is less than or equal to the largest among the latter. In Table 2, we
have computed thki, lo values for the matrix in Table 1.

Using Observation 1 4o[v] < hi[u], for all u,v — we conclude thafminu ::
hi[u]) = (maxwv :: lo[v]) if there is a saddle point, and this is also the value of the
saddle point. Hence, the value of a saddle point is unique in a matrix, if one exists.

3.4.5 Associativity of Lowest Common Ancestor in a Tree

We redo the example of the lowest common ancestor of section 3.2.2. Using quantifi-
cation shortens the proof by at least half. For instance, to prove tkatommutative
we no longer have to construct two proofs: T y) > (y T z) and(y T ) > (x T y).
Consider a partial ordex in which z T y, the least upper bound of andy, is
uniquely defined for all: andy. We derive certain properties of that it is commu-
tative, associative, idempotent and monotonic. The partially-ordered set need not be
finite.
The least upper bound may be defined as follows.

Definition: z7y<z =zx<zAy<z.
It is easy to show that this definition matches the more conventional one:
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We give a few examples df. Letx < y mean thaty is an ancestor af (assume
x is its own ancestor) in a tree. Then7 y is the least common ancestor ofand
y according to this definition. As another example,de y mean that: dividesy
wherex andy are positive integers. ThenT y is the least common multiple af and
y. Also, z T y denotes the maximum aof andy, wherex andy are reals, and < y
has its standard meaning.

All the results given in this note also apply to the operatdefined as follows:

z<zx |y =z2<xANz<y.

For exampleg | y may denote thecd of = andy for positive integers: andy. It may
also denotenin over numbers where < y has its standard meaning.

Proposition 1: Indirect Proof of Ordering
(y<z) = Vwuz<w = y<w)
Proof: For
(y<a) = Vwzz<w = y<w)
the proof is immediate. In the other direction, givetw :: x <w = y < w), setw

tozx togety < z.

Proposition 2:  Indirect Proof of Equality
(r=y) = Vwrz<w = y<w)

Proof: Apply proposition 1 to show < y andy < x.

Proposition 3: 1 is commutative.
Proof: For anyz, iy, w

zly<w

= {Definition}
r<wAy<w

= {Commutativity ofA}
y<w A z<w

= {Definition}
yTae<w

From proposition 2(x 1 y) = (y 1 z). a
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Proposition 4: 1 is associative.
Proof: For anyz, y, z, w,

Ty Tz<w
= {Definition applied twicé
(e<wAhy<w)Az<w
= {Associativity ofA}
r<wA(y<wAz<w)
= {Definition applied twicé
T (ylz) <w

From proposition 2(x Ty) Tz=2 7 (y T 2).
A few properties of are readily provable:

1. (Idempotence} T = = .
2. (Monotonicity)a <z Ab<y = alb<zxTy.
Proof of (2): Assume < z A b < y.

rly<w
= {Definition}
z<wAy <w
= {Premisex < x A b < y, and transitivity of<}
a<wAb<w
= {Definition}
alTb<w

Using proposition 1g T < z T .

A Small Derivation As an application of these results we prove that
@ly=ylz2)=@ly=2Tyl2)

In particular,(ged(z, y) = ged(y, 2) = (ged(x,y) = ged(x,y, 2)).
Proof:

zly

= {idempotencg
(z1y) 1 (zTy)

= {21y =ylz}
(1Y) 1 (yT2)

= {Commutativity and associativity df}
rT(yTy T2

= {idempotence(y T y) = y}
zlylz
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3.5 Proof Methods

Avristotle-style Proof contrasted with Mathematical proof.
Givens:

1. Axioms/ Postulates, Premises, Previously proven theorems
2. Inference rules

Required: prove certain conclusions/theorem/propositions.
Typical steps are:

1. Mathematical modeling: Convert the problem from an informal description to a
formal one.

2. Manipulation: Using the rules of logic.
3. Interpretation: convert logical deductions to the informal domain.

The structure of a theorem is oftgn=- ¢; p is the hypothesis anglis the conclu-
sion. The given inference rules and axioms have to be employed in the proof.

When you are unable to prove look for a counterexample.

Three-halves conjecture: start with 7. Ask them to do 27.

P #NP.

Fermat'’s conjecture.

Goldbach Conjecture.

3.5.1 Proof by Contradiction

Show thaty/2 is irrational.
The proof style is: assumg? is rational; then derive a contradiction. Le¢® be
m/n wherem, n are integers having no common factors.

V2 = m/n A m,n have no common factors
= {Squaring
m?2/n? = 2 A 'm,n have no common factors
= {Arithmetic}
m? = 2 x n? A m,n have no common factors
= {Sincem? =2 x n?, mis even, sayn = 2 x s}
m=2xsAn?=2x s> Am,n have no common factors
= {Sincen? =2 x s%, nis ever}
m = 2 X s AnisevenA m,n have no common factors
= {Sincem, n are both even, they have a common factor, 2
false

Thus, asked to prove = ¢, we prove(p A —q) = false In this case we were
asked to showrue = /2 irrational, and we showed2 rational = false Proof by
contradiction relies on the factth@i = ¢) = ((p A ~q) = false.
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(p A —q) = false
= {u= vissameaswuV v}
-(pA—q) V false
= {Simplify}
=(p A —q)
= {De Morgar}
Vg
= {u=-vissameasw V v}

p=4q

Exercise: Show that to proye=- ¢, it is sufficient to provep A —q) = q.

3.5.2 Existence Proofs

Constructive Proof: There exists a prime larger thé@. Display one.

Show that for every positive integer there are: consecutive positive integers which
are all composites. For = 2, we haveg, 9; for n = 3, the sequencg, 9, 10 works
and forn = 5 take24,25,26,27,28. In general letz = (n + 1)! + 1. Take then
consecutive integers+ 1, ...,z + i, ...,z + n. Show that: + ¢ is divisible byi + 1,
1< <n.

Non-constructive proof: There are irrationalsh such that” is rational. consider
(W2,

1. Case 1: The bas,ﬁb@/5 is rational. Theru, b = /2, v/2.
2. Case 2: The base@\/i is irrational. (\/iﬁ)\/5 = \/iﬁxﬂ =2 =2

Thus,a, b = \/iﬁ, V2.
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