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1 Introduction

1. Introduce self, TA.

2. Go over the handout.

3. What is this course about?

4. No programming.

5. Why is this material is useful?

6. How to study for it?

7. How I teach?

2 Preliminary Material

Reading Assignment, Homework Read Rosen 1.4, 1.5, 1.6
Homeworks:

1.4: 7, 8, 10, 13, 15, 22, 25
1.5: 35, 37, 40, 44
1.6: 24, 26, 27, 35, 38

2.1 Sets

2.1.1 Set Enumeration, Comprehension

{cat, dog, pig}, {3, 5, 7}, {0, 1, 2, ...}.
Order is unimportant.
Repetition is irrelevant.
We restrict our set elements to mathematical objects.
Element types could be mixed:{3, {3, 5}, 7}
Set equality: Note that 36= {3}.
• Definition throughEnumeration:

Roman Alphabet, Arabic Numerals, Pascal Keywords.

• Definition throughComprehension: {x| conditions onx}.
All integers between 0 and 10:{x| 0 ≤ x ≤ 10}.
All even integers between 0 and 10:{x| 0 ≤ x ≤ 10 ∧ evenx}, or explicitly
{0, 2, 4, 6, 8, 10}.
All even integers:{x| evenx}. Infinite set.

All integers that are even and odd:{x| evenx ∧ oddx}.
Some important sets: integers , naturals, positive integers, negative integers, reals,

rationals.
Empty set: written asφ. Noteφ 6= {φ}.
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Set membership written asx ∈ S.
3 ∈ {3, {3, 5}, 7}.
{3, 5} ∈ {3, {3, 5}, 7}.

Cardinality of S, written as|S|:
|{2}| = 1, |φ| = 0, |{x| 0 ≤ x ≤ 10}| = 11
What is the cardinality of naturals?

Subset

naturals⊆ integers,
φ ⊆ S, S ⊆ S,
S ⊆ T , T ⊆ S ⇒ S = T
S ⊆ T , T ⊆ U ⇒ S ⊆ U
S ⊆ T , S, T finite⇒ cardinality ofS ≤ cardinality ofT .

Powerset Powerset ofS is the set of all subsets ofS.
ForS = {0, 1, 2}, the powerset is,

{{}, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.
What is the powersetφ? {{}}.
The cardinality of the powerset ofS is 2|S|. Check forφ.
Show the connection between subsets andn-bit strings.

2.1.2 Operations on Sets

• Union ComputeS ∪ T where

S = {0, 1, 2} andT = {3, 4},
S = {0, 1, 2} andT = {2, 3, 4},
S = {0, 1, 2} andT = {0}.

N ∪ Z = Z, S ∪ φ = S, S ∪ S = S.

∪ is not quite like the plus on integers; you can’t cancel:
S ∪ T = T does not mean thatS = φ.

Formally,x ∈ S ∪ T meansx ∈ S or x ∈ T .

Note:S ⊆ T ⇒ S ∪ T = T .

• Intersection ComputeS ∩ T where

S = {0, 1, 2} andT = {2, 3, 4},
S = {0, 1, 2} andT = {0},
S = {0, 1, 2} andT = {3, 4}.
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S ∩ φ = φ, S ∩ S = S.
Formally,x ∈ S ∩ T meansx ∈ S andx ∈ T .

Note:

S ∩ T ⊆ S ⊆ S ∪ T .
S ⊆ T ⇒ S ∩ T = S.

Two sets aredisjoint if their intersection is empty; i.e., they have no common
element.

• DifferenceS − T = {x| x ∈ S ∧ x /∈ T}.
{2, 3} − {1, 2} = {3}.
{2, 3} − {1, 0} = {2, 3}.
Compute:(({0, 1, 2} ∪ {1, 3, 4})− {3}) ∩ {1, 2, 3}. Answer is{1, 2}.
Note:S − φ = S, S ⊆ T ⇒ S − T = φ.

Note:S − T may be different fromT − S.

• Complement

Given a universal setS is the set of elements not inS. Let integers be the
universal set; thenevens = odd.

• Facts about set operations

Binary Operators
Commutative: +,×, min, max, xor(addition mod 2), lowest-common-ancestor

of a pair of nodes in a tree.

Operators that are not commutative: subtraction, division

Associative: +,×, min, max, xor(addition mod 2), String Concatenation, Matrix
Product; Function Composition; “;” in C++, lowest-common-ancestor of a pair
of nodes in a tree.

Note: No paranthesis needed when writing a chain of associative operations.

Operators that are not associative: subtraction.

Operators that are commutative but not associative:
x⊕ y = (x + y)/2. Note that⊕ is commutative.
(0⊕ 4)⊕ 2 = 2⊕ 2 = 2, 0⊕ (4⊕ 2) = 0⊕ 3 = 1.5.

Operators that are not commutative but associative: string concatenation, Matrix
product, Function Composition.

∪, ∩ are commutative and associative.
S ∩ S = φ, S ∪ S = U .
S ∪ (T ∩R) = (S ∪ T ) ∩ (S ∪R),
S ∩ (T ∪R) = (S ∩ T ) ∪ (S ∩R),
Contrast witha× (b + c).
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Mention Venn diagrams.

• Cartesian Products

Ordered pairs: (name, telephone)

Tuples,n-tuples.

Note: tuples are different from sets; order matters and the same element may
appear several times in a tuple.

S × T = {(x, y)| x ∈ S ∧ y ∈ T}.
{0, 1} × {1} = {(0, 1), (1, 1)}.
{0, 1} × {2, 3}?
Cartesian product is not commutative.S × T may be different fromT × S.

Cartesian product is associative.

Compute{0, 1} × {1, 2} × {2, 0}.
Given finite setsS, T , |S × T | = |S| × |T |.
Cartesian product can be shown as a matrix.

2.2 Function

A mapping fromS to T . Either or both ofS, T may be infinite. We writef : S → T
for a function with domainS and range (or codomain)T .

Example:ha : {ant, cow, cat, pig, dog} → {T, F}.
ha(ant) = T,ha(cow) = F,ha(cat) = T,ha(pig) = F,ha(dog) = F.
Note: Every point in the domain maps to some point in the range.

1. Onto/surjective: covers the whole range. Note thatha is onto.

2. one-to-one/injective: each element in the range is mapped to by at most one
element.f(x) = f(y) ⇒ x = y. ha is not one-to-one.

3. one-to-one and onto (or, bijective): both properties.

Let S be some set and id is the identity function. Show it is bijective.
LetS = {0, 1, 2}. Letf : S → S wheref(x) = x+1 mod 3. Thenf is bijective.
Let f be the successor function on the set of naturals. Isf bijective?
Let f : R → Z, wheref(x) is the largest integer not exceedingx. Is f onto?

Show a function that is one-to-one but not onto.
Show a function that is onto but not one-to-one.
Show a function that is both.
Show a function that is neither.
Show a mapping that is not a function.

Given thatf : S → T , what is the relationship between|S| and|T |? What iff is
onto, one-to-one or bijective?
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Function Composition (f ◦ g)(x) is f(g(x)). Thus,f ◦ g is a function provided
g : R → S andf : S → T . Then,f ◦ g : R → T . Similarly definef ◦ g ◦h. Often
we writefg in place off ◦ g.

R                          S                         T

g            f

Figure 1: Compositions off, g

Givenf : S → S, write f2 for f ◦ f .
Let S = {0, 1, 2}. Let f : S → S wheref(x) = x + 1 mod 3.

What isf2, f3?

Function composition is associative but not commutative.
Problem (Very Hard):f is a function from naturals to naturals. Supposef2(n) <

f(n + 1), for all naturalsn. show thatf is the identity function.

Function Inverse For a bijective functionf , there is a functiong, such thatfg = id.
That is if f(a) = b theng(b) = a. We sayg is the inverse off , and writef−1 for g.
The inverse off is written asf−1.

1. ff−1 = f−1f = id

2. f−1−1
= f

3. (fg)−1 = g−1f−1

Suppose every person has a single wife, then does every woman have a (single)
husband?

Why doesf not have an inverse if it is not bijective?

2.3 Relation

Reading Assignment, Homework Read Rosen: 6.1, 6.5, 6.6
Home work:

Graph of a function: Consider the following function,

f : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4}; wheref(x) = x2 mod 5.

We can depict the function by the following graph.
In this picture there is exactly one outgoing arrow from each node. (Note that not all

nodes have incoming arrows, and some have more than one incoming arrow). Relation
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0 1 2 3 4

Figure 2: Graph of a Function

a

b

c

d

e

Figure 3: Graph of a Relation

is a generalization of function; there are multiple or zero incoming/outgoing arrows
to/from a node.

The arrows in Figure 3 can be represented by

{(a, b), (a, c), (a, d), (c, e), (d, d), (d, e), (e, a), (e, d)}.
This is a subset of{a, b, c, d, e} × {a, b, c, d, e}.
In general, a relation is a subset ofS × T ; such a relation is called a relation from

S to T . A binary relation overS is a subset ofS × S. Here is an example of a more
general relation.

John                               CS 336

Mary                              Music 101

Jack                                Spanish 102

Sue                                 CS 353

Figure 4: A general relation

Suppose you are given some facts about who knows who in USA. How many in-
termediate persons are in the chain between you and Bill Gates?

Depict the “knows” in a picture.
Given two items either the relation holds or does not hold between them. Its result

is a boolean.∪ is not a relation.
Some common relations:
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you
Gates

Figure 5: “knows” Relation

S T Name of Relation Example
People People knows Misra knows Gates
People People Brother John is Jack’s brother
People things owns John owns a Ford
People Tel. No. has Misra has 471-9550

Mathematical Examples:≤, <,=, 6=, >,≥ on reals.
divides on integers
equals (mod 3) over integers
substring over strings
member over elements and sets.

Every function is a relation:f : S → T is the subset{(x, F (x))| x ∈ S} of s×T .
Not every relation is a function.

For binary relations, we write them in infix style:
3 < 5, 1 ∈ {1, 2}, etc. In prolog you may writeknows(Misra, Bill).

Upper and lower bounds:b is an upper bound ofx, y if x ≤ b andy ≤ b.
Least upper bound, greatest lower bound:c is a least upper bound ofx, y if it is an
upper bound and it is the smallest such, i.e., for any upper boundb of x, y, c ≤ b.

The least upper bound may not always exist. Ifx ≤ b means thatb is an ancestor
of x then for siblingsx, y, both father and mother are least upper bounds.

Show that if a least upper bound exists, it is unique.

Special kinds of relations

• Reflexive:x ≤ x, x dividesx, s substrings, p ⊆ p, p ⇒ p, x = x, s rotations.

Not reflexive: brother,<, ∈, 6=.

• Symmetric: brother relation over boys,=, 6=,≡, disjoint (setsx, y are disjoint if
x ∩ y = φ), equals (mod 3).

Not symmetric: brother relation over siblings,⇒, substring, divides,≤.
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• Transitive:≤, <,=, >,≥ on reals,⊆,⇒, divides,equals (mod 3).

Is “sibling” transitive? No.

Not transitive: “father of”,x = y + 1, knows,6=.

Exercise: Show relations that are
reflexive, symmetric but not transitive
reflexive, transitive but not symmetric
symmetric, transitive but not reflexive.

Solution to the last problem: Over the set of integers definexRy by x×y is odd.
The relation is symmetric because,xRy ≡ bothx andy are odd. It is transitive,
by the same argument. HoweverzRz does not hold ifz is even.

• Equivalence: Reflexive, symmetric and transitive:

=,≡, equals (mod 3), rotation.

Problem: Letf be a string of lengthN . It is required to decide if all cyclic rota-
tions off are distinct, i.e., check if(∀i, j : 0 ≤ i < N, 0 ≤ j < N, i 6= j : f.i 6= f.j),
wheref.i is the left rotation off by i positions. (see /Notes.dir/CyclicEquivalence.tex).

We can depict a binary relation pictorially by a graph. What is the structure of the
graph if the relation is reflexive, symmetric or transitive?

What is the structure of the graph if the relation is an equivalence relation?
Example:x is a fellow-ofy if they are citizens of the same country. This partitions

the set of people.
Places that are in the same time zone. How many partitions? Thus, we can store

this more efficiently:

GMT: London, Greenwich, ...
GMT+1: Amsterdam, Frankfurt, Brussels ..
GMT-6: Austin, Dallas, Chicago, ...

Connectivity: Road network after a typhoon, Computer network after a global
crash.

Infinite number of equivalence classes:x ∼ y for stringsx, y if they have the same
number of 1’s.

0 1’s: 0, 00, 000, 0000, ...
1 1’s: 1, 01, 001, 10, 100, 1000, .., 00100, ...
2 1’s: 11, 101, 110, ...

Equivalence relation over infinite binary strings: For infinite binary stringsx andy
write x ∼ y if x andy differ only in a finite number of corresponding positions (i.e.,
xi = yi, for almost alli). Show that∼ is an equivalence relation. Is the number of
equivalence classes finite or infinite?
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Solution to the Second Part: The number of equivalence classes is infinite. Letzi

be the string which has2i zeroes followed by2i ones. Thenzi andzj , wherei 6= j,
differ in infinite number positions; the argument is as follows. Assumei < j. In a
block of length2j , wherezj is all 0s or all 1s,zi has an equal number of 0s and 1s.
Therefore,zi andzj differ in exactly half the positions in that block. Since there are
an infinite number of blocks, they differ in infinite number of positions. So, eachzi

belongs to a distinct class.

Permutations: for stringsx, y, x ≈ y if one is a permutation of the other:
abc ≈ cba.

Games Consider a2 × 2 square in which there are 3 tiles nameda, b, c. One of the
squares is unoccupied; here shown byx. A tile can move horizontally or vertically to
an unoccupied square. Can you reach every square from every other square?

ab ab xb bx bc bc ax xa ca ca cx xc
cx xc ac ac ax xa cb cb xb bx ba ba
Show that the transitive closure of the relation is an equivalence relation.
The story of the 15-puzzle.
Rubik’s cube.
A baby is shown on the German TV to solve the puzzle in no time. Exploit sym-

metry.
Exercise: Is the intersection of two equivalence relations an equivalence relation?

What about their union and product? Is the complement of an equivalence relation an
equivalence relation?

The product of two equivalence relations is not an equivalence relation. Consider
integers 1 through 5 as the domain of the relations. Let equivalence relationsr ands
be given by:

x r y ≡ dx/2e = dy/2e
x s y ≡ bx/2c = by/2c

You can show1 (r × s) 3 and3 (r × s) 5. But 1 (r × s) 5 does not hold.

2.4 Partial Order

Consider the prerequisite structure in CS. I show a small portion below.
The prerequisites need to be acyclic. A special kind of relation: reflexive, antisym-

metric, transitive. Why does this gurantee acyclicity?
Example:≤, divides,⊆ on 2S . ForS = {a, b, c}, see the relationship below; we

have not drawn all the edges.
SetS is partially-orderedwrt ≤ if ...
Two items are comparable/incomparable.
Examples: Secure information flow.x ≤ y meansx knows a subset of whaty

knows. That is,x tells everything it knows toy.
Choose between car models: criteria are price, performance, color.

(a, b) ≤ (c, d) meansa ≤ c ∧ b ≤ d.
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   315                                                                     336

  307                                                         313K

304P

343                                           329W

310                                     105                                                                          328

Figure 6: A Partial order

{a,b,c}

{a,c}{a,b} {b,c}

{a} {b} {c}

{}

Figure 7: A Partial order

In real life, it is very difficult to find two entries where one dominates the other. To
choose, you have to order the various criteria. You may order price, performance, color
in this order. Color: pink< yellow < green< white.

Price Performance Color
23,000 8 Green
18,000 6 Yellow
18,000 7 pink

We are stuck with the pink car.

Exercise School children are taught about the primary and secondary colors using a
Venn diagram. Can you present the same material using partial orders? The primary
colors are: Red, Blue and Green. Mixture of Red and Blue produces Magenta, Red and
Green yields Yellow, Green and Blue gives Cyan, and the combination of all 3 colors
gives White.

Lexicographic Order Dictionary order. A set of n-tuples can be ordered as follows:
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(a, b) < (c, d) ≡ a < c ∨ (a = c ∧ b < d).
(a, b) ≤ (c, d) ≡ (a, b) < (c, d) ∨ (a, b) = (c, d). That is,
(a, b) ≤ (c, d) ≡ a < c ∨ (a = c ∧ b ≤ d).
Decimal notation:213 < 221 < 300. We compare two numbers of differing

lengths by appending 0s to the left of the shorter number, and then comparing them
lexicopraphically.

In the dictionary: Stringss, t are of different lengths. Truncate the longer string,t,
to the length of the shorter one,s. Call the truncated stringt′.

t′ < s ⇒ t < s
s < t′ ⇒ s < t
s = t′ ⇒ s < t

choice< choose< chosen.
Show that all strings can be totally ordered.
Total order: a partial order in which all pairs of items are comparable. Then, we

can put them in a line in order, because of transitivity. Lexicographic Order is total. So
is < over reals, but not⊆ over sets.

Exercise You have a table of individuals in which each birthdate is recorded in
mm/dd/yy format. How will you create a table in the sequence of birthdates, i.e., from
the youngest to the oldest?

Partial Order over infinite sets:⊆ over subsets of naturals.
Exercise: Call an elementx of a set minimal if no element is smaller. Call an

element least if all elements are larger.
(1) Show that minimal and least are different concepts, (2) give examples of both,

(3) show that every finite poset has a minimal element, though not necessarily a least
element.

Exercise Topological sort.

Exercise; The partial order over partitions Consider the set of equivalence rela-
tions over a setD. Each equivalence relation induces a partition overD. We may
order the partitions as follows: if a partitionp can be obtained from another partition
q by splitting some of its equivalence classes, then we say thatp is finer thanq, and
q is coarserthanp. Explore the properties of this relation. Is there a finest/coarsest
partition? For any two partitions, is there a partition that is coarser (finer) than both?

3 Logic

Reading Assignment, Homework Read Rosen 1.1, 1.2, 1.3, 3.1
Homeworks:

1.2: 8, 14, 18, 20, 24, 41
1.3: 26, 32, 38, 44, 50
3.1: 4, 8, 10, 12, 20, 26, 40, 46, 47
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3.1 Introduction

Why do we need logic? From physics with pictures to calculus.
From commonsense reasoning to logic.
Need akin to use of algebra.
Find all numbers whose squares are equal to the number itself.
Informal reasoning: Since the square is non-negative the number is itself non-

negative. Clearly, 0 is a solution. From 0 to 1, the square is no greater than the number
itself (multiplying by x, 0 < x < 1 reduces any positive number). Thus no solu-
tion in the open interval[0, 1]. Another solution is1. Beyond that multiplication byx
increases a number; hence no more solutions.

Algebraic approach: Let the unknown bex. Solvex2 = x. that is,x2 − x = 0, or
x(x− 1) = 0. This has the solutionsx = 0 andx− 1 = 0.

3.2 A Proof Style

Proof Format The proof format shown below, due to W. H. J. Feijen, is a convenient
tool for writing detailed proofs. Let⇒ denote any transitive relation (not necessarily
implication over predicates) over proof terms. A proof term may be a predicate, arith-
metic expression (in which case an arithmetic relation like< or≤ is used in place of
⇒) or a property in Seuss logic. A proof ofp ⇒ s may be structured as follows.

p
⇒ {why p ⇒ q}

q
⇒ {why q ⇒ r}

r
⇒ {why r ⇒ s}

s

3.2.1 A Property of Equivalence Relations

Let R1, R2 be two equivalence relations on some set. Define a relationR by

x R y ≡ (x R1 y) ∧ (x R2 y)

wherex, y are elements of that set. Show thatR is an equivalence relation.

R is reflexive:
x R x

≡ {definition ofR}
x R1 x ∧ x R2 x

≡ {R1, being an equivalence relation, is reflexive. Similarly,R2}
true ∧ true

≡ {logic}
true
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R is symmetric:
x R y

≡ {definition ofR}
x R1 y ∧ x R2 y

≡ {R1, being an equivalence relation, is symmetric. Similarly,R2}
y R1 x ∧ y R2 x

≡ {definition ofR}
y R x

R is transitive:
x R y ∧ y R z

≡ {definition ofR}
(x R1 y ∧ x R2 y) ∧ (y R1 z ∧ y R2 z)

≡ {rearranging the conjuncts}
(x R1 y ∧ y R1 z) ∧ (x R2 y ∧ y R2 z)

⇒ {R1, being an equivalence relation, is transitive. Similarly,R2}
x R1 z ∧ x R2 z

≡ {definition ofR}
x R z

3.2.2 Lowest Common Ancestor

This example combines several notions: commutativity, associativity of binary oper-
ators, partial order and proofs. In a given tree letx ↑ y denote the lowest common
ancestor of nodesx, y. We show that↑ is associative.

This result also applies to a partial order where↑ is the least upper bound. The least
upper bound may not always exist; when it exists it is unique.

Let z ≥ x denote thatz is an ancestor ofx. We assume the following properties.

1. Property 1:≥ is a partial order.

2. Property 2:z ≥ x ↑ y ≡ z ≥ x ∧ z ≥ y.

Proposition 1 [(x ↑ y) ≥ x] ∧ [(x ↑ y) ≥ y].

[(x ↑ y) ≥ x] ∧ [(x ↑ y) ≥ y]
= {Let z in property 2 bex ↑ y}

(x ↑ y) ≥ (x ↑ y)
= {≥ is reflexive}

true

Proposition 2 ↑ is commutative.
Proof: We have to showx ↑ y = y ↑ x. We only showx ↑ y ≥ y ↑ x; the other
inequality is similarly proven.
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(x ↑ y) ≥ (y ↑ x)
= {Property 2}

[(x ↑ y) ≥ y] ∧ [(x ↑ y) ≥ x]
= {Proposition 1}

true∧ true
= {Prdicate Calculus}

true

Associativity of ↑ We show(x ↑ y) ↑ z ≥ x ↑ (y ↑ z). The reverse inequality is
similarly proven.

(x ↑ y) ↑ z ≥ x ↑ (y ↑ z)
= {Property 2}

[(x ↑ y) ↑ z ≥ x] ∧ [(x ↑ y) ↑ z ≥ (y ↑ z)]
= {Proposition 1 applied twice:(x ↑ y) ↑ z ≥ (x ↑ y) ≥ x}

true∧ [(x ↑ y) ↑ z ≥ (y ↑ z)]
= {property of∧ and Property 2}

[(x ↑ y) ↑ z ≥ y] ∧ [(x ↑ y) ↑ z ≥ z]
= {Proposition 1 applied twice:(x ↑ y) ↑ z ≥ (x ↑ y) ≥ y}

true∧ [(x ↑ y) ↑ z ≥ z]
= {Similarly}

true

Exercise: Show that

1. (x ↑ x) = x

2. [(x ≥ a) ∧ (y ≥ b)] ⇒ [(x ↑ y) ≥ (a ↑ b)]

3.3 Propositional Logic

3.3.1 Laws

We consider the following propositional operators:∧ (and),∨ (or),¬ (not),≡ (equiv-
alence), and⇒ (implication). The equality operator (=) is defined over all domains.
Traditionally, it is written as≡ when applied to booleans; operator≡ has the low-
est binding power among all logical operators whereas operator = has higher binding
power than all logical operators except negation (¬).

• (Commutativity and Associativity)∧, ∨, ≡ are commutative and associative.

• (Idempotence)∧,∨ are idempotent:
p ∨ p ≡ p
p ∧ p ≡ p

• (Distributivity) ∧, ∨ distribute over each other:
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
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• (Absorption)
p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

• (Expansion)
(p ∧ q) ∨ (p ∧ ¬q) ≡ p
(p ∨ q) ∧ (p ∨ ¬q) ≡ p

• (Laws with Constants)

p ∧ true ≡ p p ∧ false ≡ false
p ∨ true ≡ true p ∨ false ≡ p
p ∨ ¬p ≡ true p ∧ ¬p ≡ false
p ≡ p ≡ true p ≡ ¬p ≡ false
true⇒ p ≡ p p ⇒ false ≡ ¬p

• (Double Negation)
¬¬p ≡ p

• (De Morgan)
¬(p ∧ q) ≡ (¬p ∨ ¬q)
¬(p ∨ q) ≡ (¬p ∧ ¬q)

• (Implication operator)
(p ⇒ q) ≡ (¬p ∨ q)
(p ⇒ q) ≡ (¬q ⇒ ¬p)
If (p ⇒ q) and(q ⇒ r) then(p ⇒ r), i.e.,
〈(p ⇒ q) ∧ (q ⇒ r)〉 ⇒ 〈p ⇒ r〉

• (Equivalence)
(p ≡ q) ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
(p ≡ q) ≡ (p ⇒ q) ∧ (q ⇒ p)

• (Monotonicity)
Let p ⇒ r. Then,
(p ∧ q) ⇒ (r ∧ q)
(p ∨ q) ⇒ (r ∨ q)

Strengthening, Weakening Predicater strengthens(or, is a strengthening of)p if
r ⇒ p; therefore,p ∧ q strengthensp. Similarly, r weakens(or, is a weakening of)p if
p ⇒ r; therefore,p ∨ q weakensp.

Priorities of Operators The logical operators in the decreasing order of priorities
(binding powers) are:¬, =,∧ and∨,⇒,≡. Note that= and≡ have different priorities
though they have the same meaning when applied to boolean operands. Therefore,
p∧q = r∧s is equivalent top ∧ (q = r) ∧ s whereasp∧q ≡ r∧s is (p∧q) ≡ (r∧s).
Operators∧ and∨ have the same priorities, so we use parentheses whenever there
is a possibility of ambiguity (as inp ∧ q ∨ r). To aid the reader in parsing logical
formulae visually, we often put extra whitespace around operators of lower priorities,
as inp ∧ q ≡ r ∨ s. We writex, y = m, n as an abbreviation forx = m ∧ y = n.
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3.3.2 Applications of Propositional Logic

• Show that(p ≡ q) = (¬p ≡ ¬q).

p ≡ q
= {Double negation}

¬¬(p ≡ q)
= {¬(p ≡ q) = (¬p ≡ q)}

¬(¬p ≡ q)
= {commutativity of≡}

¬(q ≡ ¬p)
= {¬(r ≡ s) = (¬r ≡ s)}

¬q ≡ ¬p
= {commutativity of≡}

¬p ≡ ¬q

• For booleansa, b, x, y, z it is given that

x = a ∧ b y = ¬a ∧ ¬b z = [(x ∨ y) ≡ b]

Expressz as a function ofa, b. Simplify your answer.

z
= {given}

(x ∨ y) ≡ b
= {x = (a ∧ b), y = (¬a ∧ ¬b)}

[(a ∧ b) ∨ (¬a ∧ ¬b)] ≡ b
= {simplify the term within square brackets}

(a ≡ b) ≡ b
= {rearrange terms}

a ≡ (b ≡ b)
= {(b ≡ b) = true}

a ≡ true
= {property of≡}

a

• Show that[p ≡ q] = [(p ⇒ q) ∧ (q ⇒ p)].

[(p ⇒ q) ∧ (q ⇒ p)]
= {rewriting implication}

[(¬p ∨ q) ∧ (¬q ∨ p)]
= {distributivity}

[(¬p ∧ ¬q) ∨ (¬p ∧ p) ∨ (q ∧ ¬q) ∨ (q ∧ p)]
= {Constants}

[(¬p ∧ ¬q) ∨ (false) ∨ (false) ∨ (q ∧ p)]
= {Simplify and rearrange}

[(p ∧ q) ∨ (¬p ∧ ¬q)]
= {Property of Equivalence}

p ≡ q
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Russell’s Paradox: Let S = {x|x /∈ x}. Thusz ∈ S ≡ z /∈ z.

S ∈ S
≡ {From above}

S /∈ S

3.3.3 Playing with Exclusive Or

Exclusive or is the negation of≡, that is(x⊕ y) = ¬(x ≡ y).
It is convenient to identifyfalsewith 0 andtruewith 1.
x⊕ 0 = x, x⊕ 1 = ¬x, x⊕ x = 0, x⊕ ¬x = 1.

⊕ is commutative, associative, and it has an identity element (0) and an inverse (x is
the inverse ofx).

Example: Exchange registersa, b.
a := a⊕ b; b := a⊕ b; a := a⊕ b.
The following program, in which⊕ is replaced by≡ also does the job.
a := a ≡ b; b := a ≡ b; a := a ≡ b.

Examples of the use of⊕: Keeping a doubly linked list where each item has a single
link field.

Encryption, decryption.

The game of Nim

Consider a cycle of2n numbersx0, ... In each step replace everyxi by xi ⊕ xi+1,
where+ in the subscript is modulo2n. Let Xi be the initial value ofxi. Show that
after2k stepsxi = Xi ⊕Xi+2k . Thus, eventually all numbers are zero.

Teaser Problem A cycle has2n integersx0..x2n−1. In each step simultaneously for
all i,

xi := |xi − xi+1|, where arithmetic in the subscripts is modulo2n. Show that all
x eventually become 0.

Exercise Given predicatesr ands, show that the weakest solution top in the follow-
ing formulae is(r ∧ b) ∨ (s ∧ ¬b).

p ∧ b ⇒ r
p ∧ ¬b ⇒ s

That is(r ∧ b) ∨ (s ∧ ¬b) satisfies the two formulae given above, and ifq is any
solution thenq ⇒ 〈(r ∧ b) ∨ (s ∧ ¬b)〉. Note that the strongest solution forp is false.

Solution: We first show that(r∧b)∨ (s∧¬b) is a solution. Substituting(r∧b)∨ (s∧¬b)
for p in the antecedent of the first formula:
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((r ∧ b) ∨ (s ∧ ¬b)) ∧ b
≡ (r ∧ b ∧ b) ∨ (s ∧ ¬b ∧ b)
≡ r ∧ b
⇒ r

Substituting(r ∧ b) ∨ (s ∧ ¬b) for p in the antecedent of the second formula:

((r ∧ b) ∨ (s ∧ ¬b)) ∧ ¬b
≡ (r ∧ b ∧ ¬b) ∨ (s ∧ ¬b ∧ ¬b)
≡ s ∧ ¬b
⇒ s

Next, we show that(r ∧ b) ∨ (s ∧ ¬b) is as weak as any solution. That is for any
solutionq, q ⇒ 〈(r ∧ b) ∨ (s ∧ ¬b)〉. So, we have to show

〈((q ∧ b) ⇒ r) ∧ ((q ∧ ¬b) ⇒ s)〉 ⇒ 〈q ⇒ ((r ∧ b) ∨ (s ∧ ¬b))〉
The proof is as follows.

〈(q ∧ b) ⇒ r〉 ∧ 〈(q ∧ ¬b) ⇒ s〉
⇒ {〈(a ∧ c) ⇒ d〉 ⇒ 〈(a ∧ c) ⇒ (d ∧ c)〉}

〈(q ∧ b) ⇒ (r ∧ b)〉 ∧ 〈(q ∧ ¬b) ⇒ (s ∧ ¬b)〉
⇒ {disjunction:〈(q ∧ b) ∨ (q ∧ ¬b)〉 ≡ q}

q ⇒ 〈(r ∧ b) ∨ (s ∧ ¬b)〉

Exercise Let⊕ and⊗ be binary boolean operators. We say that⊕ is adual of ⊗ if
the following holds for allx andy.

¬(x⊕ y) ≡ (¬x⊗ ¬y)

1. Show that∧ is a dual of∨.

2. Show that every binary boolean operator has a unique dual.

3. Show that⊗ is a dual of⊕ iff ⊕ is a dual of⊗.

4. What is the dual of≡?

5. What is the dual of⇒?

Solution

1. Use De Morgan’s law.

2. The dual⊕ of ⊗ is uniquely defined by

(x⊕ y) ≡ ¬(¬x⊗ ¬y)

3. We have to show that

(x⊗ y) ≡ ¬(¬x⊕ ¬y)
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The proof is as follows.

¬(¬x⊕ ¬y)
≡ {definition of⊕}

¬¬(¬¬x⊗ ¬¬y)
≡ {double negation}

x⊗ y

4. Writing∼ for the dual of≡, we have

x ∼ y
≡ {definition of dual}

¬(¬x ≡ ¬y)
≡ {(¬x ≡ ¬y) ≡ (x ≡ y)}

¬(x ≡ y)

Thus,∼ is exclusive or.

5. Writing≈ for the dual of⇒, we have

x ≈ y
≡ {definition of dual}

¬(¬x ⇒ ¬y)
≡ {(¬x ≡ ¬y) ≡ (y ⇒ x)}

¬(y ⇒ x)
≡ {expanding(y ⇒ x)}

¬(¬y ∨ x)
≡ {De Morgan}

y ∧ ¬x
≡ {Rearranging terms}

¬x ∧ y

3.4 Quantification

Notation For every number there is a larger number. This is typically written as
∀x.∃y.y > x, or∀x∃y.y > x.

We write:
(∀x :: there is a numbery larger thanx), or
(∀x :: (∃y :: y is larger thanx)), or
(∀x :: (∃y :: y > x)).

To write this formula for natural numbers only:
(∀x : x natural : (∃y : y natural : y > x)).

Every even number at least 4 is a sum of two primes:
(∀x : x even∧ x ≥ 4 : there exist two primes that add uptox), or
(∀x : x even∧ x ≥ 4 : (∃y, z : y prime ∧ z prime : x = y + z)).

We use quantification in writing arithmetic and boolean expressions. In all cases,
a quantified expression is of the following form:〈⊗x : q(x) : e(x)〉. Here,⊗ is any
commutative, associative binary operator,x is theboundvariable (or a list of bound
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variables),q(x) is a predicate that determines therangeof the bound variables and
e(x) is an expression called thebody. A quantified expression in which the range is
implicit is written in the following form: 〈⊗x :: e(x)〉. We use other brackets in
addition to angular brackets “〈” and “〉” to delimit the quantified expressions. Some
examples of quantified expressions are given below.

〈+ i : 0 ≤ i ≤ N : A[i]〉 (1)
〈∀i : 0 ≤ i < N : A[i] ≤ A[i + 1]〉 (2)
〈∀i, j : 0 ≤ i ≤ N ∧ 0 ≤ j ≤ N ∧ i 6= j : M [i, j] = 0〉 (3)
〈min i : 0 ≤ i ≤ N ∧ (∀j : 0 ≤ j ≤ N : M [i, j] = 0) : i〉 (4)
〈max p : p ∈ P : p.next(t)〉 (5)

To evaluate a quantified expression: (1) compute all possible values of the bound
variablex that satisfy range predicateq(x), (2) instantiate the bodye(x) with each
value computed in (1), and (3) combine the instantiated expressions in (2) using opera-
tor⊗. In case the range is empty, the value of the expression is the unit element of op-
erator⊗; unit elements of some common operators are as given next, in parentheses fol-
lowing the operator:+ (0), × (1), ∧ (true), ∨ (false), ≡ (true), min (+∞), max (−∞)
.

The values of the example expressions are as follows. Expression (1) is the sum
of the array elementsA[0], . . . , A[N ]. Expression (2) istrue iff A[0], . . . , A[N ] are in
ascending order. Expression (3) has two bound variables; this boolean expression is
true iff all off-diagonal elements of matrixM [0..N, 0..N ] are zero. Expression (4) is
the smallest-numbered row inM all of whose elements are zero; if there is no such row
the expression evaluates to∞. Expression (5) is the maximum of allp.next(t) where
p is in P .

Examples Assume thatx, y, z are integers in the following examples.
(∀x :: x2 > x) = false.
(∃x :: x2 > x) = true.
(∀x : 0 ≤ x ≤ 1 : (∃y : y > 0 : y < x)) = false.

For every pair of distinct integers there is an integer that falls between them:
(∀x, y : x 6= y : (∃z :: x < z < y ∨ y < z < x)), or
(∀x, y : x < y : (∃z :: x < z < y)).
This evaluates tofalse.

Matrix A[0..M, 0..N ] has a row of zeroes:
(∃i : 0 ≤ i ≤ M : row i is all zeroes), i.e.,
(∃i : 0 ≤ i ≤ M : (∀j : 0 ≤ j ≤ N : A[j] = 0))

The index of the lowest row in matrixA[0..M, 0..N ] that has ascending elements.
Assume there is such a row.

(min i : 0 ≤ i ≤ M : row i is ascending), i.e.,
(min i : 0 ≤ i ≤ M : (∀j : 0 ≤ j ≤ N : A[i, j] ≤ A[i, j + 1]))
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The number of non-zero elements in matrixA:
(+i, j : 0 ≤ i ≤ M ∧ 0 ≤ j ≤ N ∧ A[i, j] 6= 0 : 1).

Free and Bound Variables The bound variables in a formula are explicitly declared,
as explained earlier. The remaining variables arefree. We adopt the convention that a
formula isuniversally quantifiedover its free variables. Thus, read

z ≥ x ↑ y ≡ z ≥ x ∧ z ≥ y to mean
(∀x, y, z :: z ≥ x ↑ y ≡ z ≥ x ∧ z ≥ y)

3.4.1 Laws of Predicate calculus

In quantified boolean expressions, we often use the existential quantifier∃ and univer-
sal quantifier∀ in place of∨ and∧. The following are some of the useful identities.

• (Empty Range)

〈∀i : false: b〉 ≡ true

〈∃i : false: b〉 ≡ false

• (Trading)

〈∀i : q : b〉 ≡ 〈∀i :: q ⇒ b〉
〈∃i : q : b〉 ≡ 〈∃i :: q ∧ b〉

• (Move-out) Given thati does not occur as a free variable inp,

p ∨ 〈∀i : q : b〉 ≡ 〈∀i : q : p ∨ b〉
p ∧ 〈∃i : q : b〉 ≡ 〈∃i : q : p ∧ b〉

• (De Morgan)

¬〈∃i : q : b〉 ≡ 〈∀i : q : ¬b〉
¬〈∀i : q : b〉 ≡ 〈∃i : q : ¬b〉

• (Range weakening) Given thatq ⇒ q′,

〈∀i : q′ : b〉 ⇒ 〈∀i : q : b〉
〈∃i : q : b〉 ⇒ 〈∃i : q′ : b〉

• (Body weakening) Given thatb ⇒ b′,

〈∀i : q : b〉 ⇒ 〈∀i : q : b′〉
〈∃i : q : b〉 ⇒ 〈∃i : q : b′〉
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A number of identities can be derived from the trading rule (consult Gries and
Schneider [1, Chapter 9]); we show two below.

〈∀i : q ∧ r : b〉 ≡ 〈∀i : q : r ⇒ b〉
〈∃i : q ∧ r : b〉 ≡ 〈∃i : q : r ∧ b〉

The following duals of the move-out rule are valid iff rangeq is not false.

p ∧ 〈∀i : q : b〉 ≡ 〈∀i : q : p ∧ b〉
p ∨ 〈∃i : q : b〉 ≡ 〈∃i : q : p ∨ b〉

3.4.2 Laws with Arithmetic Relations

The usual arithmetic relations are:< = > ≤ 6= ≥. The first three are the only ones
needed; the others can be defined in terms of them as follows.

(x ≤ y) ≡ (x = y ∨ x < y)
(x 6= y) ≡ ¬(x = y)
(x ≥ y) ≡ (x = y ∨ x > y)

The important properties of arithmetic relations are:

1. For any two reals (or integers or rationals)x, y, we have(x < y)∨(x = y)∨(x >
y).

2. ≤ and≥ are total orders.

3. = is an equivalence relation.

4. 6= is symmetric, but neither reflexive nor transitive.

5. x < y = ¬(x ≥ y).
x > y = ¬(x ≤ y).

3.4.3 Exercises with Predicate Calculus

1. Show that

(∀i : q ∧ r : B) is same as(∀i : q : r ⇒ b), and
(∃i : q ∧ r : b) is same as(∃i : q : r ∧ b).

2. Are the following pairs equal?

(∀x : (∃y :: P (x, y))) and(∃y : (∀x :: P (x, y))).
(∃x : (∃y :: P (x, y))) and(∃y : (∃x :: P (x, y))).
(∀x : (∀y :: P (x, y))) and(∀y : (∀x :: P (x, y))).

3. Prove that all of the following are equal, using De Morgan

¬(∃x :: (∀y :: P (x, y))),
(∀x :: ¬(∀y :: P (x, y)))
(∀x :: (∃y :: ¬P (x, y))).

SupposeP (x, y) is x lovesy. What do these sentences say?
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4. Why are the following not valid even whenp does not namei?

p ∧ (∀i : q : b) ≡ (∀i : q : p ∧ b)
p ∨ (∃i : q : b) ≡ (∃i : q : p ∨ b)

Answer: For empty range:
p ∧ (∀i : q : b) is p and(∀i : q : p ∧ b) is true. Therefore, ifp is falsethese two
are different.

Also, for empty range:
p ∨ (∃i : q : b) is p and(∃i : q : p ∨ b) is false. Therefore, ifp is true these two
are different.

5. Write the following statements formally.

(a) Every integer is bigger than some integer and smaller than some integer.

(b) There is no integer that is bigger than all integers.

(c) For all nonzero integers there is a different integer having the same absolute
value. (Use|x| for the absolute value ofx.)

(d) No integer is both bigger and smaller than any integer.

Solutions:

(a) (∀ x : x int:
(∃ y : y int: x > y)

∧ (∃ z : z int: x < z)
)

(b) ¬(∃ x : x int:
(∀ y : y int: x > y)

)

(c) (∀ x : x int ∧ x 6= 0:
(∃ y : y int ∧ x 6= y : |x| = |y|)

)

(d) ¬(∃ x : x int:
(∃ y : y int: x > y ∧ x < y)

)

6. Express the following. Given is a setS and a binary relation∗ on it.

(a) ∗ is reflexive,

(b) ∗ is symmetric,

(c) ∗ is transitive

Solution:

(a) (∀x : x ∈ S : x ∗ x)
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9 2 6
7 4 0
5 3 1

Table 1: A Matrix with a saddle point

(b) (∀x, y : x ∈ S, y ∈ S : x ∗ y ⇒ y ∗ x)

(c) (∀x, y, z : x ∈ S, y ∈ S, z ∈ S : (x ∗ y ∧ y ∗ z) ⇒ x ∗ z)

7. An itemx of a subset is asmallestelement if for every elementy in that subset
x∗y. Elementx of a subset isminimalin that subset if there is noy in that subset
such thaty ∗ x. Express

(a) the smallest element ofS is unique,

(b) a smallest element ofS is a minimal element ofS,

(c) every subset ofS, except the empty set, has a minimal element.

Solution: In the following,
x smallest in T stands for(∀y : y ∈ T : x ∗ y)
x minimal in T stands for¬(∃y : y ∈ T : y ∗ x)

(a) (∀u, v : u ∈ S, v ∈ S :
u smallest in S ∧ v smallest in S ⇒ u = v)

(b) (∀u : u ∈ S : u smallest in S ⇒ u minimal in S)

(c) (∀T : T ⊆ S ∧ T 6= φ : (∃u : u ∈ T : u minimal in T ))

3.4.4 An application: Saddle Point

Given is a matrixA of numbers. Henceforth,i, u range over the row indices andj, v
over the column indices. An entry of the matrix is called asaddle pointif it is the
largest in its rowand the smallest in its column. We will derive an algorithm to deter-
mine if the matrix has a saddle point. In the following example the bottom left entry is
a saddle point. Are there any others?

Let
hi[u] = the largest entry in rowu, i.e,hi[u] = (max j :: A[u, j])
lo[v] = the smallest entry in columnv, i.e, lo[v] = (min i :: A[i, v])

Observation 1: From the definition ofhi, lo, for all u, v,
lo[v] ≤ A[u, v] ≤ hi[u].

Definition A[u, v] is a saddle point iff(A[u, v] = hi[u] ∧A[u, v] = lo[v]).

Observation 2A[u, v] is a saddle point≡ (hi[u] ≤ lo[v]).
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9 2 6 9
7 4 0 7
5 3 1 5
5 2 0

Table 2:hi, lo values for the matrix in Table 1

hi[u] ≤ lo[v]
= {Observation 1}

(hi[u] ≤ lo[v]) ∧ (lo[v] ≤ A[u, v] ≤ hi[u])
= {Predicate Calculus}

A[u, v] = hi[u] ∧A[u, v] = lo[v]
= {Definition of saddle point}

A[u, v] is a saddle point

The matrix has a saddle point if(∃u, v :: A[u, v] is a saddle point). Calculation
shows:

(∃u, v :: A[u, v] is a saddle point)
= {Observation 2}

(∃u, v :: hi[u] ≤ lo[v])
= {Arithmetic}

(minu :: hi[u]) ≤ (max v :: lo[v])

We now have an algorithm to detect if a matrix has a saddle point: compute the
largest element of each row and the smallest of each column; check if the smallest
among the former is less than or equal to the largest among the latter. In Table 2, we
have computed thehi, lo values for the matrix in Table 1.

Using Observation 1 –lo[v] ≤ hi[u], for all u, v – we conclude that(minu ::
hi[u]) = (max v :: lo[v]) if there is a saddle point, and this is also the value of the
saddle point. Hence, the value of a saddle point is unique in a matrix, if one exists.

3.4.5 Associativity of Lowest Common Ancestor in a Tree

We redo the example of the lowest common ancestor of section 3.2.2. Using quantifi-
cation shortens the proof by at least half. For instance, to prove that↑ is commutative
we no longer have to construct two proofs:(x ↑ y) ≥ (y ↑ x) and(y ↑ x) ≥ (x ↑ y).

Consider a partial order≤ in which x ↑ y, the least upper bound ofx andy, is
uniquely defined for allx andy. We derive certain properties of↑, that it is commu-
tative, associative, idempotent and monotonic. The partially-ordered set need not be
finite.

The least upper bound may be defined as follows.

Definition: x ↑ y ≤ z ≡ x ≤ z ∧ y ≤ z.
It is easy to show that this definition matches the more conventional one:
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(x ≤ x ↑ y) ∧ y ≤ x ↑ y, and
(x ≤ t ∧ y ≤ t) ⇒ (x ↑ y ≤ t)

We give a few examples of↑. Let x ≤ y mean thaty is an ancestor ofx (assume
x is its own ancestor) in a tree. Thenx ↑ y is the least common ancestor ofx and
y according to this definition. As another example, letx ≤ y mean thatx dividesy
wherex andy are positive integers. Thenx ↑ y is the least common multiple ofx and
y. Also, x ↑ y denotes the maximum ofx andy, wherex andy are reals, andx ≤ y
has its standard meaning.

All the results given in this note also apply to the operator↓ defined as follows:

z ≤ x ↓ y ≡ z ≤ x ∧ z ≤ y.

For example,x ↓ y may denote thegcd of x andy for positive integersx andy. It may
also denotemin over numbers wherex ≤ y has its standard meaning.

Proposition 1: Indirect Proof of Ordering

(y ≤ x) ≡ (∀w :: x ≤ w ⇒ y ≤ w)

Proof: For

(y ≤ x) ⇒ (∀w :: x ≤ w ⇒ y ≤ w)

the proof is immediate. In the other direction, given(∀w :: x ≤ w ⇒ y ≤ w), setw
to x to gety ≤ x.

Proposition 2: Indirect Proof of Equality

(x = y) ≡ (∀w :: x ≤ w ≡ y ≤ w)

Proof: Apply proposition 1 to showx ≤ y andy ≤ x.

Proposition 3: ↑ is commutative.
Proof: For anyx, y, w

x ↑ y ≤ w
≡ {Definition}

x ≤ w ∧ y ≤ w
≡ {Commutativity of∧}

y ≤ w ∧ x ≤ w
≡ {Definition}

y ↑ x ≤ w

From proposition 2,(x ↑ y) = (y ↑ x). 2
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Proposition 4: ↑ is associative.
Proof: For anyx, y, z, w,

(x ↑ y) ↑ z ≤ w
≡ {Definition applied twice}

(x ≤ w ∧ y ≤ w) ∧ z ≤ w
≡ {Associativity of∧}

x ≤ w ∧ (y ≤ w ∧ z ≤ w)
≡ {Definition applied twice}

x ↑ (y ↑ z) ≤ w

From proposition 2,(x ↑ y) ↑ z = x ↑ (y ↑ z). 2

A few properties of↑ are readily provable:

1. (Idempotence)x ↑ x = x.

2. (Monotonicity)a ≤ x ∧ b ≤ y ⇒ a ↑ b ≤ x ↑ y.

Proof of (2): Assumea ≤ x ∧ b ≤ y.

x ↑ y ≤ w
≡ {Definition}

x ≤ w ∧ y ≤ w
⇒ {Premise:a ≤ x ∧ b ≤ y, and transitivity of≤}

a ≤ w ∧ b ≤ w
≡ {Definition}

a ↑ b ≤ w

Using proposition 1,a ↑ b ≤ x ↑ y.

A Small Derivation As an application of these results we prove that

(x ↑ y = y ↑ z) ⇒ (x ↑ y = x ↑ y ↑ z)

In particular,(gcd(x, y) = gcd(y, z)) ⇒ (gcd(x, y) = gcd(x, y, z)).
Proof:

x ↑ y
= {idempotence}

(x ↑ y) ↑ (x ↑ y)
= {x ↑ y = y ↑ z}

(x ↑ y) ↑ (y ↑ z)
= {Commutativity and associativity of↑}

x ↑ (y ↑ y) ↑ z
= {idempotence:(y ↑ y) = y}

x ↑ y ↑ z
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3.5 Proof Methods

Aristotle-style Proof contrasted with Mathematical proof.
Givens:

1. Axioms/ Postulates, Premises, Previously proven theorems

2. Inference rules

Required: prove certain conclusions/theorem/propositions.
Typical steps are:

1. Mathematical modeling: Convert the problem from an informal description to a
formal one.

2. Manipulation: Using the rules of logic.

3. Interpretation: convert logical deductions to the informal domain.

The structure of a theorem is oftenp ⇒ q; p is the hypothesis andq is the conclu-
sion. The given inference rules and axioms have to be employed in the proof.

When you are unable to prove look for a counterexample.
Three-halves conjecture: start with 7. Ask them to do 27.
P 6= NP .
Fermat’s conjecture.
Goldbach Conjecture.

3.5.1 Proof by Contradiction

Show that
√

2 is irrational.
The proof style is: assume

√
2 is rational; then derive a contradiction. Let

√
2 be

m/n wherem,n are integers having no common factors.
√

2 = m/n ∧m,n have no common factors
⇒ {Squaring}

m2/n2 = 2 ∧m,n have no common factors
⇒ {Arithmetic}

m2 = 2× n2 ∧m,n have no common factors
⇒ {Sincem2 = 2× n2, m is even, saym = 2× s}

m = 2× s ∧ n2 = 2× s2 ∧m,n have no common factors
⇒ {Sincen2 = 2× s2, n is even}

m = 2× s ∧ n is even∧m,n have no common factors
⇒ {Sincem,n are both even, they have a common factor, 2}

false

Thus, asked to provep ⇒ q, we prove(p ∧ ¬q) ⇒ false. In this case we were
asked to showtrue ⇒ √

2 irrational, and we showed
√

2 rational ⇒ false. Proof by
contradiction relies on the fact that(p ⇒ q) ≡ ((p ∧ ¬q) ⇒ false).
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(p ∧ ¬q) ⇒ false
= {u ⇒ v is same as¬u ∨ v}

¬(p ∧ ¬q) ∨ false
= {Simplify}

¬(p ∧ ¬q)
= {De Morgan}

¬p ∨ q
= {u ⇒ v is same as¬u ∨ v}

p ⇒ q

Exercise: Show that to provep ⇒ q, it is sufficient to prove(p ∧ ¬q) ⇒ q.

3.5.2 Existence Proofs

Constructive Proof: There exists a prime larger than100. Display one.
Show that for every positive integern, there aren consecutive positive integers which
are all composites. Forn = 2, we have8, 9; for n = 3, the sequence8, 9, 10 works
and forn = 5 take24, 25, 26, 27, 28. In general letx = (n + 1)! + 1. Take then
consecutive integersx + 1, ..., x + i, ..., x + n. Show thatx + i is divisible byi + 1,
1 ≤ i ≤ n.

Non-constructive proof: There are irrationalsa, b such thatab is rational. consider

(
√

2
√

2
)
√

2.

1. Case 1: The base
√

2
√

2
is rational. Thena, b =

√
2,
√

2.

2. Case 2: The base
√

2
√

2
is irrational. (

√
2
√

2
)
√

2 =
√

2
√

2×√2
=
√

2
2

= 2.

Thus,a, b =
√

2
√

2
,
√

2.
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