Text Compression

Jayadev Misra
The University of Texas at Austin

July 1, 2003

Contents

1 Introduction 1
2 A Very Incomplete Introduction To Information Theory 2
3 Huffman Coding 5
3.1 Uniquely Decodable Code; Prefix Code 5
3.2 Constructing Optimal Prefix Code: Huffman Algorithm 7
3.3 Proof of Huffman Algorithm 8
3.4 Implementation of Huffman Algorithm 10
4 Lempel-Ziv Algorithm 11

1 Introduction

Data compression is useful and necessary in a variety of applications. These applications can be broadly divided into two groups: transmission and storage. Transmission involves sending a file, from a sender to a receiver, over a channel. Compression reduces the number of bits to be transmitted, thus making the transmission process more efficient. Storing a file in a compressed form typically requires fewer bits, thus utilizing storage resources (including main memory itself) more efficiently.
Data compression can be applied to any kind of data: text, image (such as fax), audio and video. A 1-second video without compression takes around 20 megabytes (i.e., 170 megabits) and a 2-minute CD-quality uncompressed music (44,100 samples per second with 16 bits per sample) requires more than 84 megabits. Impressive gains can be made by compressing video, for instance, because successive frames are very similar to each other in their contents. In fact, real-time video transmission would be impossible without considerable compression. There are several new applications which generate data at prodigious rates; certain earth orbiting satellites create around half a terabyte $\left(10^{12}\right)$ of data per day. Without compression there is no hope of storing such large files in spite of the impressive advances made in the storage technologies.

Lossy and Lossless compressions Most data types, except text, are compressed in such a way that a very good approximation, but not the exact content, of the original file can be recovered by the receiver. For instance, even though the human voice can range up to 20 kHz in frequency, telephone transmissions retain only up to about $5 \mathrm{kHz} .{ }^{1}$ The voice that is reproduced at the receiver's end is a close approximation to the real thing, but it is not exact. Try listening to your favorite CD played over a telephone line. Video transmissions often sacrifice quality for speed of transmission. The type of compression in such situations is called lossy, because the receiver can not exactly reproduce the original contents. For analog signals, all transmissions are lossy; the degree of loss determines the quality of transmission.

Text transmissions are required to be lossless. It will be a disaster to change even a single symbol in a text file. ${ }^{2}$ In this note, we study several lossless compression schemes for text files. Henceforth, we use the terms string and text file synonymously.

Error detection and correction can be applied to uncompressed as well as compressed strings. Typically, a string to be transmitted is first compressed and then encoded for errors. At the receiver's end, the received string is first decoded (error detection and correction are applied to recover the compressed string), and then the string is decompressed.

What is the typical level of compression? The amount by which a text string can be compressed depends on the string itself. A repetitive lyric like "Old McDonald had a farm" can be compressed significantly, by transmitting a single instance of a phrase that is repeated. ${ }^{3}$ I compressed a postscript file of $2,144,364$ symbols to 688,529 symbols using a standard compression algorithm, gzip; so, the compressed file is around 32% of the original in length. I found a web site ${ }^{4}$ where The Adventures of Tom Sawyer, by Mark Twain, is in uncompressed form at 391 Kbytes and compressed form (in zip format) at 172 Kbytes; compressed file is around 44% of the original.

2 A Very Incomplete Introduction To Information Theory

Take a random string of symbols over a given alphabet; imagine that there is a source that spews out these symbols following some probability distribution over the alphabet. If all symbols of the alphabet are equally probable, then

[^0]you can't do any compression at all. However, if the probabilities of different symbols are non-identical - say, over a binary alphabet " 0 " occurs with 90% frequency and " 1 " with 10% - you may get significant compression. This is because you are likely to see runs of zeroes more often, and you may encode such runs using short bit strings. A possible encoding, using 2-bit blocks, is: 00 for 0,01 for 1,10 for 00 and 11 for 000 . We are likely to see a large number of " 000 " strings which would be compressed by one bit, whereas for encoding " 1 " we lose a bit.

In 1948, Claude E. Shannon[4] published "A Mathematical Theory of Communication", in which he presented the concept of entropy, which gives a quantitative measure of the compression that is possible. I give below an extremely incomplete treatment of this work.

Consider a finite alphabet; it may be binary, the Roman alphabet, all the symbols on your keyboard, or any other finite set. A random source outputs a string of symbols from this alphabet; it has probability p_{i} of producing the $i^{t h}$ symbol. Productions of successive symbols are independent, that is, for its next output, the source selects a symbol with the given probabilities independent of what it has produced already. The entropy, h, of the alphabet is given by

$$
h=-\sum_{i} p_{i}\left(\log p_{i}\right)
$$

where \log stands for logarithm to base 2. Shannon showed that you need at least h bits on the average to encode each symbol of the alphabet; i.e., for lossless transmission of a (long) string of n symbols, you need at least $n h$ bits. And, it is possible to transmit at this rate!

To put this theory in concrete terms, suppose we have the binary alphabet where the two symbols are equiprobable. Then,

$$
\begin{aligned}
h & =-0.5 \times(\log 0.5)-0.5 \times(\log 0.5) \\
& =-\log 0.5 \\
& =1
\end{aligned}
$$

That is, you need 1 bit on the average to encode each symbol, so you can not compress such strings at all! Next, suppose the two symbols are not equiprobable; " 0 " occurs with probability 0.9 and " 1 " with 0.1 . Then,

$$
\begin{aligned}
h & =-0.9 \times(\log 0.9)-0.1 \times(\log 0.1) \\
& =0.469
\end{aligned}
$$

The text can be compressed to less than half its size. If the distribution is even more lop-sided, say 0.99 probability for " 0 " and 0.01 for " 1 ", then $h=0.080$; it is possible to compress the file to 8% of its size.

Exercise 1

Show that for an alphabet of size m where all symbols are equally probable, the entropy is $\log m$.

Next, consider English text. The source alphabet is usually defined as the 26 letters and the space character. There are then several models for entropy.

Letter	Frequency	Letter	Frequency	Letter	Frequency	Letter	Frequency
a	0.08167	b	0.01492	c	0.02782	d	0.04253
e	0.12702	f	0.02228	g	0.02015	h	0.06094
i	0.06966	j	0.00153	k	0.00772	l	0.04025
m	0.02406	n	0.06749	o	0.07507	p	0.01929
q	0.00095	r	0.05987	s	0.06327	t	0.09056
u	0.02758	v	0.00978	w	0.02360	x	0.00150
y	0.01974	z	0.00074				

Table 1: Frequencies of letters in English texts, alphabetic order

Letter	Frequency	Letter	Frequency	Letter	Frequency	Letter	Frequency
e	0.12702	t	0.09056	a	0.08167	o	0.07507
i	0.06966	n	0.06749	s	0.06327	h	0.06094
r	0.05987	d	0.04253	l	0.04025	c	0.02782
u	0.02758	m	0.02406	w	0.02360	f	0.02228
g	0.02015	y	0.01974	p	0.01929	b	0.01492
v	0.00978	k	0.00772	j	0.00153	x	0.00150
q	0.00095	z	0.00074				

Table 2: Frequencies of letters in English texts, descending order

The zero-order model assumes that the occurrence of each character is equally likely. Using the zero-order model, the entropy is $h=\log 27=4.75$. That is, a string of length n would have no less than $4.75 \times n$ bits.

The zero-order model does not accurately describe English texts: letters occur with different frequency. Six letters - 'e', 't', 'a', 'o', 'i', 'n'- occur over half the time; see Tables 1 and 2. Others occur rarely, such as ' q ' and ' z '. In the first-order model, we assume that each symbol is statistically independent (that is, the symbols are produced independently) but we take into account the probability distribution. The first-order model is a better predictor of frequencies and it yields an entropy of 4.219 bits/symbol. For a source alphabet including the space character, a traditional value is 4.07 bits/symbol with this model.

Higher order models take into account the statistical dependence among the letters, such as that ' q ' is almost always followed by ' u ', and that there is a high probability of getting an 'e' after an 'r'. A more accurate model of English yields lower entropy. The third-order model yields 2.77 bits/symbol. Estimates by Shannon [5] based on human experiments have yielded values as low as 0.6 to 1.3 bits/symbol.

Compression Techniques from Earlier Times Samuel Morse developed a code for telegraphic transmissions in which he encoded the letters using a binary alphabet, a dot (\cdot) and a dash (-). He assigned shorter codes to letters like 'e'(•) and ' a '($\cdot-$) which occur more often in texts, and longer codes to rarely-occurring

Symbol	Prob.	C1	avg. length	C2	avg. length	C3	avg. length
a	0.05	00	$0.05 \times 2=0.1$	00	$0.05 \times 2=0.1$	000	$0.05 \times 3=0.15$
c	0.5	0	$0.5 \times 1=0.5$	01	$0.5 \times 2=1.0$	1	$0.5 \times 1=0.5$
g	0.4	1	$0.4 \times 1=0.4$	10	$0.4 \times 2=0.8$	01	$0.4 \times 2=0.8$
t	0.05	11	$0.05 \times 2=0.1$	11	$0.05 \times 2=0.1$	001	$0.05 \times 3=0.15$
exp. length $=1.1$						2.0	1.6

Table 3: Three different codes for $\{a, c, g, t\}$
letters, like ' q ' (---$)$ and ' j '($\cdot---)$.
The Braille code, developed for use by the blind, uses a 2×3 matrix of dots where each dot is either flat or raised. The 6 dots provide $2^{6}=64$ possible combinations. After encoding all the letters, the remaining combinations are assigned to frequently occurring words, such as "and" and "for".

3 Huffman Coding

We are given a set of symbols and the probability of occurrence of each symbol in some long piece of text. The symbols could be $\{0,1\}$ with probability 0.9 for 0 and 0.1 for 1 , Or, the symbols could be $\{a, c, g, t\}$ from a DNA sequence with appropriate probabilities, or Roman letters with the probabilities shown in Table 1. In many cases, particularly for text transmissions, we consider frequently occurring words -such as "in", "for", "to"- as symbols. The problem is to devise a code, a binary string for each symbol, so that (1) any encoded string can be decoded (i.e., the code is uniquely decodable, see below), and (2) the expected code length - probability of each symbol times the length of the code assigned to it, summed over all symbols- is minimized.

Example Let the symbols $\{a, c, g, t\}$ have the probabilities $0.05,0.5,0.4,0.05$ (in the given order). We show three different codes, C1, C2 and C3, and the associated expected code lengths in Table 3.

Code C1 is not uniquely decodable because $c c$ and a will both be encoded by 00 . Code C 2 encodes each symbol by a 2 bit string; so, it is no surprise that the expected code length is 2.0 in this case. Code C3 has variable lengths for the codes. It can be shown that C3 is optimal, i.e., it has the minimum expected code length.

3.1 Uniquely Decodable Code; Prefix Code

We can get low expected code length by assigning short codewords to every symbol. If we have n symbols we need n distinct codewords. But that is not enough. As the example above shows, it may still be impossible to decode a piece of text unambiguously. A code is uniquely decodable if every string of symbols is encoded into a different string.

A prefix code is one in which no codeword is a prefix of another. ${ }^{5}$ The codewords $000,1,01,001$ for $\{a, c, g, t\}$ constitute a prefix code. A prefix code is uniquely decodable: if two distinct strings are encoded identically, either their first symbols are identical (then, remove their first symbols, and repeat this step until they have distinct first symbols), or the codeword for one first symbol is a prefix of the other first symbol, contradicting that we have a prefix code.

It can be shown -but I will not show it in these notes- that there is an optimal uniquely decodable code which is a prefix code. Therefore, we can limit our attention to prefix codes only, which we do in the rest of this note.

A prefix code can be depicted by a labeled binary tree, as follows. Each leaf is labeled with a symbol (and its associated probability), a left edge by 0 and a right edge by 1 . The codeword associated with a symbol is the sequence of bits on the path from the root to the corresponding leaf. See Figure 1 for a prefix code for $\{a, c, g, t\}$ which have associated probabilities of $0.05,0.5,0.4,0.05$ (in the given order).

Figure 1: Prefix code for $\{a, c, g, t\}$

The length of a codeword is the corresponding pathlength. The weighted pathlength of a leaf is the probability associated with it times its pathlength. The expected code length is the sum of the weighted pathlengths over all leaves. Henceforth, the expected code length of a tree will be called its weight, and a tree is best if its weight is minimum. Note that there may be several best trees for the given probabilities.

Since the symbols themselves play no role - the probabilities identify the associated symbols - we dispense with the symbols and work with the probabilities only. Since the same probability may be associated with two different symbols, we have a bag, i.e., a multiset, of probabilities. Also, it is immaterial that the bag elements are probabilities; the algorithm applies to any bag of non-negative numbers. We use the set notation for bags below.

[^1]
Exercise 2

Try to construct the best tree for the following values $\{1,2,3,4,5,7,8\}$. The weight of the best tree is 78 .

Remark: In a best tree, there is no dangling leaf; i.e., each leaf is labeled with a distinct symbol. Therefore, every internal node (i.e., nonleaf) has exactly two children. Such a tree is called a full binary tree

Exercise 3

Show two possible best trees for the alphabet $\{0,1,2,3,4\}$ with probabilities $\{0.2,0.4,0.2,0.1,0.1\}$. The trees should not be mere rearrangements of each other through reflections of subtrees.

3.2 Constructing Optimal Prefix Code: Huffman Algorithm

Huffman has given an extremely elegant algorithm for constructing a best tree for a given set of symbols with associated probabilities. ${ }^{6}$

The optimal prefix code construction problem is: given a bag of non-negative numbers, construct a best tree. That is, construct a binary tree and label its leaves by the numbers from the bag so that the weight, i.e., the sum of the weighted pathlengths to the leaves, is minimized.

The Huffman Algorithm If bag, b, has a single number, create a tree of one node, which is both a root and a leaf, and label the node with the number. Otherwise (the bag has at least two numbers), let u and v be the two smallest numbers in b, not necessarily distinct. Let $b^{\prime}=b-\{u, v\} \cup\{u+v\}$, i.e., b^{\prime} is obtained from b by replacing its two smallest elements by their sum. Construct a best tree for b^{\prime}. There is a leaf node in the tree labeled $u+v$; expand this node to have two children which are leaves and label them with u and v.

[^2]Illustration of Huffman Algorithm Given a bag $\{0.05,0.5,0.4,0.05\}$, we obtain successively

```
b
b _ { 1 } = \{ 0 . 1 , 0 . 5 , 0 . 4 \} \quad , ~ r e p l a c i n g ~ \{ 0 . 0 5 , 0 . 0 5 \} ~ b y ~ t h e i r ~ s u m ~
b}={0.5,0.5}\quad, replacing {0.1,0.4} by their sum
b}={1.0} , replacing {0.5,0.5} by their sum
```

The trees corresponding to these bags are shown below:

3.3 Proof of Huffman Algorithm

We prove that Huffman algorithm yields a best tree.
Lemma 1: Let u and v be the two smallest values in bag $b, u \leq v$. There is a best tree for b in which two sibling leaves are labeled u and v.

Proof: In a best tree, T, consider two leaves which are siblings at the end of a longest path. Let x and y be the labels on these leaves, $x \leq y$. Then $u \leq v \leq x \leq y$. We show that exchanging x with u and y with v yields a best tree. Note that, u and v are siblings in this tree. Also note that, an exchange, say x with u, has no effect if $x=u$.

Let the pathlength to x and u in T be X and U, respectively. Let T^{\prime} be the tree obtained by exchanging x and u. Exchange of x and u affects only the combined weighted pathlengths to these nodes, which is $x X+u U$ in T and $x U+u X$ in T^{\prime}. Since x is at the end of a longest path in T and that $u \leq x$:

$$
\begin{array}{cc}
& U \leq X \text { and } x-u \geq 0 \\
\Rightarrow & \{\text { arithmetic }\} \\
\Rightarrow \quad & (x-u) U \leq(x-u) X \\
\Rightarrow & \{\text { regrouping terms }\} \\
& x U+u X \leq x X+u U
\end{array}
$$

Therefore, the weight of T^{\prime} is at most that of T; so T^{\prime} is a best tree since T is. Similarly, after exchanging y and v we obtain a best tree.

The following theorem shows that Huffman algorithm constructs a best tree.
Theorem: Let u and v be the two smallest values in bag b and $b^{\prime}=b-\{u, v\} \cup$ $\{u+v\}$. Let T^{\prime} be a best tree for b^{\prime}. Then T is a best tree for b where T is obtained from T^{\prime} by expanding the leaf with label $u+v$ to a pair of leaves with labels u and v.

Proof: Let the pathlength to the leaf $u+v$ in T^{\prime} be n. Then, the pathlengths to u and v in T are $n+1$. The weighted pathlength of $T, W(T)$, is obtained from $W\left(T^{\prime}\right)$ by replacing the term $n(u+v)$ in the sum by $(n+1) u+(n+1) v$, i.e.,

$$
\begin{equation*}
W(T)=W\left(T^{\prime}\right)+(u+v) \tag{1}
\end{equation*}
$$

Let S be a best tree for b in which u and v are siblings; such a best tree exists, from Lemma 1 . From S construct S^{\prime} by removing the two leaves labeled u and v, and labeling their parent $u+v$. Now, S^{\prime} is a tree for b^{\prime}, and

$$
\begin{equation*}
W(S)=W\left(S^{\prime}\right)+(u+v) \tag{2}
\end{equation*}
$$

We show that T is a best tree for b by proving that $W(T) \leq W(S)$; since S is a best tree for b, so is T.

```
    W(T)
= {from (1)}
    W(T')+(u+v)
\leq {W(T') \leqW(S'), because T}\mp@subsup{T}{}{\prime}\mathrm{ is a best tree and }\mp@subsup{S}{}{\prime}\mathrm{ any tree for }\mp@subsup{b}{}{\prime}
    W(S')+(u+v)
= {from (2)}
    W(S)
```


Exercise 4

1. What is the structure of the Huffman tree for $2^{n}, n \geq 0$, equiprobable symbols?
2. Show that the tree corresponding to an optimal prefix code is a full binary tree.
3. In a best tree, consider two nodes labeled x and y, and let the corresponding pathlengths be X and Y, respectively. Show that

$$
x<y \Rightarrow X \geq Y
$$

4. Prove or disprove (in the notation of the previous exercise)

$$
\begin{aligned}
& x \leq y \Rightarrow X \geq Y, \text { and } \\
& x=y \Rightarrow X \geq Y
\end{aligned}
$$

5. Consider the first n fibonacci numbers (start at 1). What is the structure of the tree constructed by Huffman algorithm on these values?
6. Give a 1-pass algorithm to compute the weight of the optimal tree.
7. Show that the successive values computed during execution of Huffman algorithm (by adding the two smallest values) are nondecreasing.
8. (Research) As we have observed, there may be many best trees for a bag. We may wish to find the very best tree which is a best tree in which the maximum pathlength to any node is as small as possible. The following procedure achieves this: whenever there is a tie in choosing values, always choose an original value rather than a value obtained through combinations of previous values. Show the correctness of this method and also that it minimizes the sum of the pathelengths among all best trees. See Knuth[2], section 2.3.4.5, page 404.

How Good is Huffman Code We know from Information theory (see section 2) that it is not possible to construct code whose weight is less than the entropy, but it is possible to find codes with this value (asymptotically). It can be shown that for any alphabet whose entropy is h, the huffman code with weight H satisfies:

$$
h \leq H<h+1
$$

So, Huffman code comes extremely close to the predicted theoretical optimum.
However, in another sense, Huffman coding leaves much to be desired. The probabilities are very difficult to estimate if you are compressing something other than standard English novels. How do you get the frequencies of symbols in a postscript file? And, which ones should we choose as symbols in such a file? The latter question is very important because files tend to have bias toward certain phrases, and we can compress much better if we choose those as our basic symbols.

The Lempel-Ziv code, described in the following section addresses some of these issues.

3.4 Implementation of Huffman Algorithm

During the execution of Huffman algorithm, we will have a bag of elements where each element holds a value and it points to either a leaf node -in case it represents an original value - or a subtree -if it has been created during
the run of the algorithm. The algorithm needs a data structure on which the following operations can be performed efficiently: (1) remove the element with the smallest value and (2) insert a new element. In every step, operation (1) is performed twice and operation (2) once. The creation of a subtree from two smaller subtrees is a constant-time operation, and is left out in the following discussion.

A priority queue supports both operations. Implemented as a heap, the space requirement is $O(n)$ and each operation takes $O(\log n)$ time, where n is the maximum number of elements. Hence, the $O(n)$ steps of Huffman algorithm can be implemented in $O(n \log n)$ time.

There is an important special case in which the algorithm can be implemented in linear time. Suppose that the initial bag is available as a sorted list. Then, each operation can be implemented in constant time. Let leaf be the list of initial values sorted in ascending order. Let nonleaf be the list of values generated in sequence by the algorithm (by summing the two smallest values in leaf \cup nonleaf).

The important observation is that

- (monotonicity) nonleaf is an ascending sequence.

You are asked to prove this in part 7 of the exercises in section 3.3.
This observation implies that the smallest element in leaf \cup nonleaf at any point during the execution is the smaller of the two items at the heads of leaf and nonleaf. That item is removed from the appropriate list, and the monotonicity property is still preserved. An item is inserted by adding it at the tail end of nonleaf, which is correct according to monotonicity.

It is clear that leaf is accessed as a list at one end only, and nonleaf at both ends, one end for insertion and the other for deletion. Therefore, leaf may be implemented as a stack and nonleaf as a queue. Each operation then takes constant time, and the whole algorithm runs in $O(n)$ time.

4 Lempel-Ziv Algorithm

As we have noted earlier, Huffman coding achieves excellent compression when the frequencies of the symbols can be predicted, and when we can identify the interesting symbols. In a book, say Hamlet, we expect the string Ophelia to occur quite frequently, and it should be treated as a single symbol. LempelZiv coding does not require the frequencies to be known a-priori. Instead, the sender scans the text from left to right identifying certain strings (henceforth, called words) which it inserts into a dictionary. Let me illustrate the procedure when the dictionary already contains the following words. Each word in the dictionary has an index, simply its position.

index	word
0	\rangle
1	t

index	word	transmission
0	\rangle	none
1	t	$(0, t)$
2	a	$(0, a)$
3	c	$(0, c)$
4	$c a$	$(3, a)$
5	g	$(0, g)$
6	$t a$	$(1, a)$
7	$c c$	$(3, c)$
8	$a g$	$(2, g)$
9	$t a c$	$(6, c)$
10	$c a c$	$(4, c)$
11	$t a \#$	$(6, \#)$

Table 4: Transmission of taccagtaccagtaccacta\# using Lempel-Ziv Code

2	a
3	$t a$

Suppose the remaining text to be transmitted is taaattaaa. The sender scans this text from left until it finds a string which is not in the dictionary. In this case, t and $t a$ are in the dictionary, but taa is not in the dictionary. The sender adds this word to the dictionary, and assigns it the next higher index, 4. Also, it transmits this word to the receiver. But it has no need to transmit the whole word (and, then, we will get no compression at all). The prefix of the word excluding its last symbol, i.e., $t a$, is a dictionary entry (remember, the sender scans the text just one symbol beyond a dictionary word). Therefore, it is sufficient to transmit $(3, a)$, where 3 is the index of $t a$, the prefix of taa that is in the dictionary, and a is the last symbol of taa.

The receiver recreates the string taa, by loooking up the word with index 3 and appending a to it, and then it appends taa to the text it has created already; also, it updates the dictionary with the entry

```
index word
    4 taa
```

Initially, the dictionary has a single word, the empty string, \rangle, as its only $\left(0^{t h}\right)$ entry. The sender and receiver start with this copy of the dictionary and the sender continues its transmissions until the text is exhausted. To ensure that the sender can always find a word which is not in the dictionary, assume that the end of the file, written as \#, occurs nowhere else in the string.

Example Consider the text taccagtaccagtaccacta\#. The dictionary and the transmissions are shown in Table 4.

It should be clear that the receiver can update the dictionary and recreate the text from the given transmissions. Therefore, the sequence of transmissions
constitutes the compressed file. In the small example shown above, there is hardly any compression. But for longer files with much redundancy, this scheme achieves excellent results. Lempel-Ziv coding is asymptotically optimal, i.e., as the text length tends to infinity, the compression tends to the optimal value predicted by information theory.

The dictionary size is not bounded in this scheme. In practice, the dictionary is limited to a fixed size, like 4096 (so that each index can be encoded in 12 bits). Beyond that point, the transmissions continue in the same manner, but the dictionary is not updated. Also, in practical implementations, the dictionary is initially populated by all the symbols of the alphabet.

There is a number of variations of the Lempel-Ziv algorithm, all having the prefix LZ. What I have described here is known as LZ78 [6]. Many popular compression programs - Unix utility "compress", "gzip", Windows "Winzip"are based on some variant of the Lempel-Ziv algorithm. Another algorithm, due to Burrows and Wheeler [1], is used in the popular "bzip" utility.

Implementation of the Dictionary We develop a data structure to implement the dictionary and the two operations on it: (1) from a given text find the (shortest) string which is not in the dictionary, and (2) add a new entry to the dictionary. The data structure is a special kind of tree (sometimes called a "trie"). Associated with each node of the tree is a word of the dictionary and its index; associated with each branch is a symbol, and branches from a node have different associated symbols. The root node has the word \rangle (empty string) and index 0 associated with it. The word associated with any node is the sequence of symbols on the path to that node. Initially, the tree has only the root node.

Given a text string, the sender starts matching its symbols against the symbols at the branches, starting at the root node. The process continues until a node, n, is reached from which there is no branch labelled with the next input symbol, s. At this point, index of n and the symbol s are transmitted. Additionally, node n is extended with a branch labelled s.

Consider the tree shown in Figure 2. If the text is taccag\#, the prefix tac matches until the node with index 8 . Therefore, index 8 and the next symbol, c, are transmitted. The tree is updated by adding a branch out of node 8 , labelled c; the new node acquires the highest index, 9 .

Exercise 5

1. Is it necessary to maintain the word at each node?
2. If your input alphabet is large, it will be non-trivial to look for a branch out of a node which is labeled with a specific symbol. Devise an efficient implementation of the tree in this case.
3. Suppose that the string Ophelia appears in the text, but none of its prefixes do. How many occurrences of this string should be seen before it is encoded as a word?

Figure 2: Implementation of the dictionary in Lempel-Ziv Algorithm

Acknowledgment I am grateful to Thierry Joffrain for helping me write part of section 2 .

References

[1] M. Burrows and D. J. Wheeler. A Block-sorting Lossles Data Compression Algorithm. Technical Report 124, Digital, SRC Research Report, May 1994.
[2] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming. Addison-Wesley, Reading, Massachusetts, 1997.
[3] Donald E. Knuth. The Complexity of Songs. Communications of the ACM, 27(4):344-348, April 1984.
[4] Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379-423, 1948.
[5] Claude E. Shannon. Prediction and entropy of printed English. The Bell System Technical Journal, 30:50-64, 1950.
[6] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory, IT-24(5):530-536, Sept. 1978.

[^0]: ${ }^{1}$ A famous theorem, known as the sampling theorem, states that the signal must be sampled at twice this rate, i.e., around 10,000 times a second. Typically, 8 to 16 bits are produced for each point in the sample.
 ${ }^{2}$ There are exceptions to this rule. In some cases it may not matter to the receiver if extra white spaces are squeezed out, or the text is formatted slightly differently.
 ${ }^{3}$ Knuth [3] gives a delightful treatment of a number of popular songs in this vein.
 ${ }^{4}$ http://www.ibiblio.org/gutenberg/cgi-bin/sdb/t9.cgi/t9.cgi?entry=74 \&full=yes\&ftpsite=http://www.ibiblio.org/gutenberg/

[^1]: ${ }^{5}$ String s is a prefix of string t if $t=s \# x$, for some string x, where $\#$ denotes concatenation.

[^2]: ${ }^{6}$ I call an algorithm elegant if it is easy to state and hard to prove.

