
Text Compression

Jayadev Misra
The University of Texas at Austin

July 1, 2003

Contents

1 Introduction 1

2 A Very Incomplete Introduction To Information Theory 2

3 Huffman Coding 5
3.1 Uniquely Decodable Code; Prefix Code 5
3.2 Constructing Optimal Prefix Code: Huffman Algorithm 7
3.3 Proof of Huffman Algorithm . 8
3.4 Implementation of Huffman Algorithm 10

4 Lempel-Ziv Algorithm 11

1 Introduction

Data compression is useful and necessary in a variety of applications. These
applications can be broadly divided into two groups: transmission and storage.
Transmission involves sending a file, from a sender to a receiver, over a channel.
Compression reduces the number of bits to be transmitted, thus making the
transmission process more efficient. Storing a file in a compressed form typically
requires fewer bits, thus utilizing storage resources (including main memory
itself) more efficiently.

Data compression can be applied to any kind of data: text, image (such as
fax), audio and video. A 1-second video without compression takes around 20
megabytes (i.e., 170 megabits) and a 2-minute CD-quality uncompressed mu-
sic (44,100 samples per second with 16 bits per sample) requires more than 84
megabits. Impressive gains can be made by compressing video, for instance, be-
cause successive frames are very similar to each other in their contents. In fact,
real-time video transmission would be impossible without considerable com-
pression. There are several new applications which generate data at prodigious
rates; certain earth orbiting satellites create around half a terabyte (1012) of
data per day. Without compression there is no hope of storing such large files
in spite of the impressive advances made in the storage technologies.

1

Lossy and Lossless compressions Most data types, except text, are com-
pressed in such a way that a very good approximation, but not the exact content,
of the original file can be recovered by the receiver. For instance, even though
the human voice can range up to 20kHz in frequency, telephone transmissions
retain only up to about 5kHz.1 The voice that is reproduced at the receiver’s
end is a close approximation to the real thing, but it is not exact. Try listening
to your favorite CD played over a telephone line. Video transmissions often
sacrifice quality for speed of transmission. The type of compression in such
situations is called lossy, because the receiver can not exactly reproduce the
original contents. For analog signals, all transmissions are lossy; the degree of
loss determines the quality of transmission.

Text transmissions are required to be lossless. It will be a disaster to change
even a single symbol in a text file.2 In this note, we study several lossless
compression schemes for text files. Henceforth, we use the terms string and text
file synonymously.

Error detection and correction can be applied to uncompressed as well as
compressed strings. Typically, a string to be transmitted is first compressed
and then encoded for errors. At the receiver’s end, the received string is first
decoded (error detection and correction are applied to recover the compressed
string), and then the string is decompressed.

What is the typical level of compression? The amount by which a text
string can be compressed depends on the string itself. A repetitive lyric like “Old
McDonald had a farm” can be compressed significantly, by transmitting a single
instance of a phrase that is repeated.3 I compressed a postscript file of 2,144,364
symbols to 688,529 symbols using a standard compression algorithm, gzip; so,
the compressed file is around 32% of the original in length. I found a web site4

where The Adventures of Tom Sawyer, by Mark Twain, is in uncompressed form
at 391 Kbytes and compressed form (in zip format) at 172 Kbytes; compressed
file is around 44% of the original.

2 A Very Incomplete Introduction To Informa-
tion Theory

Take a random string of symbols over a given alphabet; imagine that there is
a source that spews out these symbols following some probability distribution
over the alphabet. If all symbols of the alphabet are equally probable, then

1A famous theorem, known as the sampling theorem, states that the signal must be sampled
at twice this rate, i.e., around 10,000 times a second. Typically, 8 to 16 bits are produced for
each point in the sample.

2There are exceptions to this rule. In some cases it may not matter to the receiver if extra
white spaces are squeezed out, or the text is formatted slightly differently.

3Knuth [3] gives a delightful treatment of a number of popular songs in this vein.
4http://www.ibiblio.org/gutenberg/cgi-bin/sdb/t9.cgi/t9.cgi?entry=74

&full=yes&ftpsite=http://www.ibiblio.org/gutenberg/

2

you can’t do any compression at all. However, if the probabilities of different
symbols are non-identical —say, over a binary alphabet “0” occurs with 90%
frequency and “1” with 10%— you may get significant compression. This is
because you are likely to see runs of zeroes more often, and you may encode
such runs using short bit strings. A possible encoding, using 2-bit blocks, is: 00
for 0, 01 for 1, 10 for 00 and 11 for 000. We are likely to see a large number of
“000” strings which would be compressed by one bit, whereas for encoding “1”
we lose a bit.

In 1948, Claude E. Shannon[4] published “A Mathematical Theory of Com-
munication”, in which he presented the concept of entropy, which gives a quan-
titative measure of the compression that is possible. I give below an extremely
incomplete treatment of this work.

Consider a finite alphabet; it may be binary, the Roman alphabet, all the
symbols on your keyboard, or any other finite set. A random source outputs a
string of symbols from this alphabet; it has probability pi of producing the ith

symbol. Productions of successive symbols are independent, that is, for its next
output, the source selects a symbol with the given probabilities independent of
what it has produced already. The entropy, h, of the alphabet is given by

h = −∑
i pi (log pi)

where log stands for logarithm to base 2. Shannon showed that you need at least
h bits on the average to encode each symbol of the alphabet; i.e., for lossless
transmission of a (long) string of n symbols, you need at least nh bits. And, it
is possible to transmit at this rate!

To put this theory in concrete terms, suppose we have the binary alphabet
where the two symbols are equiprobable. Then,

h = −0.5× (log 0.5)− 0.5× (log 0.5)
= − log 0.5
= 1

That is, you need 1 bit on the average to encode each symbol, so you can not
compress such strings at all! Next, suppose the two symbols are not equiprob-
able; “0” occurs with probability 0.9 and “1” with 0.1. Then,

h = −0.9× (log 0.9)− 0.1× (log 0.1)
= 0.469

The text can be compressed to less than half its size. If the distribution is even
more lop-sided, say 0.99 probability for “0” and 0.01 for “1”, then h = 0.080; it
is possible to compress the file to 8% of its size.

Exercise 1
Show that for an alphabet of size m where all symbols are equally probable, the
entropy is log m. 2

Next, consider English text. The source alphabet is usually defined as the
26 letters and the space character. There are then several models for entropy.

3

Letter Frequency Letter Frequency Letter Frequency Letter Frequency
a 0.08167 b 0.01492 c 0.02782 d 0.04253
e 0.12702 f 0.02228 g 0.02015 h 0.06094
i 0.06966 j 0.00153 k 0.00772 l 0.04025
m 0.02406 n 0.06749 o 0.07507 p 0.01929
q 0.00095 r 0.05987 s 0.06327 t 0.09056
u 0.02758 v 0.00978 w 0.02360 x 0.00150
y 0.01974 z 0.00074

Table 1: Frequencies of letters in English texts, alphabetic order

Letter Frequency Letter Frequency Letter Frequency Letter Frequency
e 0.12702 t 0.09056 a 0.08167 o 0.07507
i 0.06966 n 0.06749 s 0.06327 h 0.06094
r 0.05987 d 0.04253 l 0.04025 c 0.02782
u 0.02758 m 0.02406 w 0.02360 f 0.02228
g 0.02015 y 0.01974 p 0.01929 b 0.01492
v 0.00978 k 0.00772 j 0.00153 x 0.00150
q 0.00095 z 0.00074

Table 2: Frequencies of letters in English texts, descending order

The zero-order model assumes that the occurrence of each character is equally
likely. Using the zero-order model, the entropy is h = log 27 = 4.75. That is, a
string of length n would have no less than 4.75× n bits.

The zero-order model does not accurately describe English texts: letters oc-
cur with different frequency. Six letters — ‘e’, ‘t’, ‘a’, ‘o’, ‘i’, ‘n’— occur over
half the time; see Tables 1 and 2. Others occur rarely, such as ‘q’ and ‘z’. In the
first-order model, we assume that each symbol is statistically independent (that
is, the symbols are produced independently) but we take into account the prob-
ability distribution. The first-order model is a better predictor of frequencies
and it yields an entropy of 4.219 bits/symbol. For a source alphabet including
the space character, a traditional value is 4.07 bits/symbol with this model.

Higher order models take into account the statistical dependence among the
letters, such as that ‘q’ is almost always followed by ‘u’, and that there is a
high probability of getting an ‘e’ after an ‘r’. A more accurate model of English
yields lower entropy. The third-order model yields 2.77 bits/symbol. Estimates
by Shannon [5] based on human experiments have yielded values as low as 0.6
to 1.3 bits/symbol.

Compression Techniques from Earlier Times Samuel Morse developed a
code for telegraphic transmissions in which he encoded the letters using a binary
alphabet, a dot (·) and a dash (–). He assigned shorter codes to letters like ‘e’(·)
and ‘a’(· –) which occur more often in texts, and longer codes to rarely-occurring

4

Symbol Prob. C1 avg. length C2 avg. length C3 avg. length
a 0.05 00 0.05× 2 = 0.1 00 0.05× 2 = 0.1 000 0.05× 3 = 0.15
c 0.5 0 0.5× 1 = 0.5 01 0.5× 2 = 1.0 1 0.5× 1 = 0.5
g 0.4 1 0.4× 1 = 0.4 10 0.4× 2 = 0.8 01 0.4× 2 = 0.8
t 0.05 11 0.05× 2 = 0.1 11 0.05× 2 = 0.1 001 0.05× 3 = 0.15

exp. length = 1.1 2.0 1.6

Table 3: Three different codes for {a, c, g, t}

letters, like ‘q’(– – · –) and ‘j’(· – – –).
The Braille code, developed for use by the blind, uses a 2× 3 matrix of dots

where each dot is either flat or raised. The 6 dots provide 26 = 64 possible
combinations. After encoding all the letters, the remaining combinations are
assigned to frequently occurring words, such as “and” and “for”.

3 Huffman Coding

We are given a set of symbols and the probability of occurrence of each symbol
in some long piece of text. The symbols could be {0, 1} with probability 0.9
for 0 and 0.1 for 1, Or, the symbols could be {a, c, g, t} from a DNA sequence
with appropriate probabilities, or Roman letters with the probabilities shown
in Table 1. In many cases, particularly for text transmissions, we consider fre-
quently occurring words —such as “in”, “for”, “to”— as symbols. The problem
is to devise a code, a binary string for each symbol, so that (1) any encoded
string can be decoded (i.e., the code is uniquely decodable, see below), and (2)
the expected code length —probability of each symbol times the length of the
code assigned to it, summed over all symbols— is minimized.

Example Let the symbols {a, c, g, t} have the probabilities 0.05, 0.5, 0.4, 0.05
(in the given order). We show three different codes, C1, C2 and C3, and the
associated expected code lengths in Table 3.

Code C1 is not uniquely decodable because cc and a will both be encoded by
00. Code C2 encodes each symbol by a 2 bit string; so, it is no surprise that the
expected code length is 2.0 in this case. Code C3 has variable lengths for the
codes. It can be shown that C3 is optimal, i.e., it has the minimum expected
code length. 2

3.1 Uniquely Decodable Code; Prefix Code

We can get low expected code length by assigning short codewords to every
symbol. If we have n symbols we need n distinct codewords. But that is not
enough. As the example above shows, it may still be impossible to decode a
piece of text unambiguously. A code is uniquely decodable if every string of
symbols is encoded into a different string.

5

A prefix code is one in which no codeword is a prefix of another.5 The
codewords 000, 1, 01, 001 for {a, c, g, t} constitute a prefix code. A prefix code
is uniquely decodable: if two distinct strings are encoded identically, either their
first symbols are identical (then, remove their first symbols, and repeat this step
until they have distinct first symbols), or the codeword for one first symbol is a
prefix of the other first symbol, contradicting that we have a prefix code.

It can be shown —but I will not show it in these notes— that there is an
optimal uniquely decodable code which is a prefix code. Therefore, we can limit
our attention to prefix codes only, which we do in the rest of this note.

A prefix code can be depicted by a labeled binary tree, as follows. Each leaf
is labeled with a symbol (and its associated probability), a left edge by 0 and a
right edge by 1. The codeword associated with a symbol is the sequence of bits
on the path from the root to the corresponding leaf. See Figure 1 for a prefix
code for {a, c, g, t} which have associated probabilities of 0.05, 0.5, 0.4, 0.05 (in
the given order).

a t

g

c

0 1

0 1

0 1

000 001

01

1

Figure 1: Prefix code for {a, c, g, t}

The length of a codeword is the corresponding pathlength. The weighted
pathlength of a leaf is the probability associated with it times its pathlength.
The expected code length is the sum of the weighted pathlengths over all leaves.
Henceforth, the expected code length of a tree will be called its weight, and a
tree is best if its weight is minimum. Note that there may be several best trees
for the given probabilities.

Since the symbols themselves play no role —the probabilities identify the
associated symbols— we dispense with the symbols and work with the proba-
bilities only. Since the same probability may be associated with two different
symbols, we have a bag, i.e., a multiset, of probabilities. Also, it is immaterial
that the bag elements are probabilities; the algorithm applies to any bag of
non-negative numbers. We use the set notation for bags below.

5String s is a prefix of string t if t = s ++ x, for some string x, where ++ denotes concate-
nation.

6

Exercise 2
Try to construct the best tree for the following values {1, 2, 3, 4, 5, 7, 8}.
The weight of the best tree is 78.

Remark: In a best tree, there is no dangling leaf; i.e., each leaf is labeled with
a distinct symbol. Therefore, every internal node (i.e., nonleaf) has exactly two
children. Such a tree is called a full binary tree. 2

Exercise 3
Show two possible best trees for the alphabet {0, 1, 2, 3, 4} with probabilities
{0.2, 0.4, 0.2, 0.1, 0.1}. The trees should not be mere rearrangements of each
other through reflections of subtrees.

0.1 0.1

0.2

0.2

0.4

0.20.4 0.2

0.1 0.1

3.2 Constructing Optimal Prefix Code: Huffman Algo-
rithm

Huffman has given an extremely elegant algorithm for constructing a best tree
for a given set of symbols with associated probabilities.6

The optimal prefix code construction problem is: given a bag of non-negative
numbers, construct a best tree. That is, construct a binary tree and label its
leaves by the numbers from the bag so that the weight, i.e., the sum of the
weighted pathlengths to the leaves, is minimized.

The Huffman Algorithm If bag, b, has a single number, create a tree of
one node, which is both a root and a leaf, and label the node with the number.
Otherwise (the bag has at least two numbers), let u and v be the two smallest
numbers in b, not necessarily distinct. Let b′ = b − {u, v} ∪ {u + v}, i.e., b′ is
obtained from b by replacing its two smallest elements by their sum. Construct
a best tree for b′. There is a leaf node in the tree labeled u + v; expand this
node to have two children which are leaves and label them with u and v.

6I call an algorithm elegant if it is easy to state and hard to prove.

7

Illustration of Huffman Algorithm Given a bag {0.05, 0.5, 0.4, 0.05}, we
obtain successively

b0 = {0.05, 0.5, 0.4, 0.05} , the original bag
b1 = {0.1, 0.5, 0.4} , replacing {0.05, 0.05} by their sum
b2 = {0.5, 0.5} , replacing {0.1, 0.4} by their sum
b3 = {1.0} , replacing {0.5, 0.5} by their sum

The trees corresponding to these bags are shown below:

0.5 0.5

0.1 0.4

0.05 0.05

Best tree for b0

1.0

0.5 0.5

0.1 0.4

Best tree for b1

1.0

0.5 0.5
Best tree for b2

1.0
1.0

Best tree for b3

3.3 Proof of Huffman Algorithm

We prove that Huffman algorithm yields a best tree.

Lemma 1: Let u and v be the two smallest values in bag b, u ≤ v. There is
a best tree for b in which two sibling leaves are labeled u and v.

Proof: In a best tree, T , consider two leaves which are siblings at the end
of a longest path. Let x and y be the labels on these leaves, x ≤ y. Then
u ≤ v ≤ x ≤ y. We show that exchanging x with u and y with v yields a best
tree. Note that, u and v are siblings in this tree. Also note that, an exchange,
say x with u, has no effect if x = u.

Let the pathlength to x and u in T be X and U , respectively. Let T ′ be
the tree obtained by exchanging x and u. Exchange of x and u affects only
the combined weighted pathlengths to these nodes, which is xX + uU in T and
xU + uX in T ′. Since x is at the end of a longest path in T and that u ≤ x:

8

U ≤ X and x− u ≥ 0
⇒ {arithmetic}

(x− u)U ≤ (x− u)X
⇒ {regrouping terms}

xU + uX ≤ xX + uU

Therefore, the weight of T ′ is at most that of T ; so T ′ is a best tree since T is.
Similarly, after exchanging y and v we obtain a best tree. 2

The following theorem shows that Huffman algorithm constructs a best tree.

Theorem: Let u and v be the two smallest values in bag b and b′ = b−{u, v}∪
{u + v}. Let T ′ be a best tree for b′. Then T is a best tree for b where T is
obtained from T ′ by expanding the leaf with label u + v to a pair of leaves with
labels u and v.

Proof: Let the pathlength to the leaf u + v in T ′ be n. Then, the pathlengths
to u and v in T are n + 1. The weighted pathlength of T , W (T), is obtained
from W (T ′) by replacing the term n(u + v) in the sum by (n + 1)u + (n + 1)v,
i.e.,

W (T) = W (T ′) + (u + v) (1)

Let S be a best tree for b in which u and v are siblings; such a best tree
exists, from Lemma 1. From S construct S′ by removing the two leaves labeled
u and v, and labeling their parent u + v. Now, S′ is a tree for b′, and

W (S) = W (S′) + (u + v) (2)

We show that T is a best tree for b by proving that W (T) ≤ W (S); since S
is a best tree for b, so is T .

W (T)
= {from (1)}

W (T ′) + (u + v)
≤ {W (T ′) ≤ W (S′), because T ′ is a best tree and S′ any tree for b′}

W (S′) + (u + v)
= {from (2)}

W (S) 2

Exercise 4

1. What is the structure of the Huffman tree for 2n, n ≥ 0, equiprobable
symbols?

2. Show that the tree corresponding to an optimal prefix code is a full binary
tree.

3. In a best tree, consider two nodes labeled x and y, and let the correspond-
ing pathlengths be X and Y , respectively. Show that

9

x < y ⇒ X ≥ Y

4. Prove or disprove (in the notation of the previous exercise)

x ≤ y ⇒ X ≥ Y , and
x = y ⇒ X ≥ Y

5. Consider the first n fibonacci numbers (start at 1). What is the structure
of the tree constructed by Huffman algorithm on these values?

6. Give a 1-pass algorithm to compute the weight of the optimal tree.

7. Show that the successive values computed during execution of Huffman
algorithm (by adding the two smallest values) are nondecreasing.

8. (Research) As we have observed, there may be many best trees for a bag.
We may wish to find the very best tree which is a best tree in which the
maximum pathlength to any node is as small as possible. The following
procedure achieves this: whenever there is a tie in choosing values, always
choose an original value rather than a value obtained through combina-
tions of previous values. Show the correctness of this method and also
that it minimizes the sum of the pathelengths among all best trees. See
Knuth[2], section 2.3.4.5, page 404. 2

How Good is Huffman Code We know from Information theory (see sec-
tion 2) that it is not possible to construct code whose weight is less than the
entropy, but it is possible to find codes with this value (asymptotically). It
can be shown that for any alphabet whose entropy is h, the huffman code with
weight H satisfies:

h ≤ H < h + 1

So, Huffman code comes extremely close to the predicted theoretical optimum.
However, in another sense, Huffman coding leaves much to be desired. The

probabilities are very difficult to estimate if you are compressing something
other than standard English novels. How do you get the frequencies of symbols
in a postscript file? And, which ones should we choose as symbols in such a file?
The latter question is very important because files tend to have bias toward
certain phrases, and we can compress much better if we choose those as our
basic symbols.

The Lempel-Ziv code, described in the following section addresses some of
these issues.

3.4 Implementation of Huffman Algorithm

During the execution of Huffman algorithm, we will have a bag of elements
where each element holds a value and it points to either a leaf node —in case
it represents an original value— or a subtree —if it has been created during

10

the run of the algorithm. The algorithm needs a data structure on which the
following operations can be performed efficiently: (1) remove the element with
the smallest value and (2) insert a new element. In every step, operation (1)
is performed twice and operation (2) once. The creation of a subtree from two
smaller subtrees is a constant-time operation, and is left out in the following
discussion.

A priority queue supports both operations. Implemented as a heap, the
space requirement is O(n) and each operation takes O(log n) time, where n is
the maximum number of elements. Hence, the O(n) steps of Huffman algorithm
can be implemented in O(n log n) time.

There is an important special case in which the algorithm can be imple-
mented in linear time. Suppose that the initial bag is available as a sorted list.
Then, each operation can be implemented in constant time. Let leaf be the
list of initial values sorted in ascending order. Let nonleaf be the list of values
generated in sequence by the algorithm (by summing the two smallest values in
leaf ∪ nonleaf).

The important observation is that

• (monotonicity) nonleaf is an ascending sequence.

You are asked to prove this in part 7 of the exercises in section 3.3.
This observation implies that the smallest element in leaf ∪ nonleaf at any

point during the execution is the smaller of the two items at the heads of leaf and
nonleaf . That item is removed from the appropriate list, and the monotonicity
property is still preserved. An item is inserted by adding it at the tail end of
nonleaf , which is correct according to monotonicity.

It is clear that leaf is accessed as a list at one end only, and nonleaf at
both ends, one end for insertion and the other for deletion. Therefore, leaf may
be implemented as a stack and nonleaf as a queue. Each operation then takes
constant time, and the whole algorithm runs in O(n) time.

4 Lempel-Ziv Algorithm

As we have noted earlier, Huffman coding achieves excellent compression when
the frequencies of the symbols can be predicted, and when we can identify the
interesting symbols. In a book, say Hamlet, we expect the string Ophelia to
occur quite frequently, and it should be treated as a single symbol. Lempel-
Ziv coding does not require the frequencies to be known a-priori. Instead, the
sender scans the text from left to right identifying certain strings (henceforth,
called words) which it inserts into a dictionary. Let me illustrate the procedure
when the dictionary already contains the following words. Each word in the
dictionary has an index, simply its position.

index word
0 〈〉
1 t

11

index word transmission
0 〈〉 none
1 t (0, t)
2 a (0, a)
3 c (0, c)
4 ca (3, a)
5 g (0, g)
6 ta (1, a)
7 cc (3, c)
8 ag (2, g)
9 tac (6, c)
10 cac (4, c)
11 ta# (6,#)

Table 4: Transmission of taccagtaccagtaccacta# using Lempel-Ziv Code

2 a
3 ta

Suppose the remaining text to be transmitted is taaattaaa. The sender
scans this text from left until it finds a string which is not in the dictionary. In
this case, t and ta are in the dictionary, but taa is not in the dictionary. The
sender adds this word to the dictionary, and assigns it the next higher index,
4. Also, it transmits this word to the receiver. But it has no need to transmit
the whole word (and, then, we will get no compression at all). The prefix of
the word excluding its last symbol, i.e., ta, is a dictionary entry (remember, the
sender scans the text just one symbol beyond a dictionary word). Therefore, it
is sufficient to transmit (3, a), where 3 is the index of ta, the prefix of taa that
is in the dictionary, and a is the last symbol of taa.

The receiver recreates the string taa, by loooking up the word with index
3 and appending a to it, and then it appends taa to the text it has created
already; also, it updates the dictionary with the entry

index word
4 taa

Initially, the dictionary has a single word, the empty string, 〈〉, as its only
(0th) entry. The sender and receiver start with this copy of the dictionary and
the sender continues its transmissions until the text is exhausted. To ensure
that the sender can always find a word which is not in the dictionary, assume
that the end of the file, written as #, occurs nowhere else in the string.

Example Consider the text taccagtaccagtaccacta#. The dictionary and the
transmissions are shown in Table 4. 2

It should be clear that the receiver can update the dictionary and recreate
the text from the given transmissions. Therefore, the sequence of transmissions

12

constitutes the compressed file. In the small example shown above, there is
hardly any compression. But for longer files with much redundancy, this scheme
achieves excellent results. Lempel-Ziv coding is asymptotically optimal, i.e., as
the text length tends to infinity, the compression tends to the optimal value
predicted by information theory.

The dictionary size is not bounded in this scheme. In practice, the dictionary
is limited to a fixed size, like 4096 (so that each index can be encoded in 12
bits). Beyond that point, the transmissions continue in the same manner, but
the dictionary is not updated. Also, in practical implementations, the dictionary
is initially populated by all the symbols of the alphabet.

There is a number of variations of the Lempel-Ziv algorithm, all having
the prefix LZ. What I have described here is known as LZ78 [6]. Many popular
compression programs —Unix utility “compress”, “gzip”, Windows “Winzip”—
are based on some variant of the Lempel-Ziv algorithm. Another algorithm, due
to Burrows and Wheeler [1], is used in the popular “bzip” utility.

Implementation of the Dictionary We develop a data structure to imple-
ment the dictionary and the two operations on it: (1) from a given text find
the (shortest) string which is not in the dictionary, and (2) add a new entry to
the dictionary. The data structure is a special kind of tree (sometimes called a
“trie”). Associated with each node of the tree is a word of the dictionary and its
index; associated with each branch is a symbol, and branches from a node have
different associated symbols. The root node has the word 〈〉 (empty string) and
index 0 associated with it. The word associated with any node is the sequence
of symbols on the path to that node. Initially, the tree has only the root node.

Given a text string, the sender starts matching its symbols against the sym-
bols at the branches, starting at the root node. The process continues until a
node, n, is reached from which there is no branch labelled with the next in-
put symbol, s. At this point, index of n and the symbol s are transmitted.
Additionally, node n is extended with a branch labelled s.

Consider the tree shown in Figure 2. If the text is taccag#, the prefix tac
matches until the node with index 8. Therefore, index 8 and the next symbol, c,
are transmitted. The tree is updated by adding a branch out of node 8, labelled
c; the new node acquires the highest index, 9.

Exercise 5

1. Is it necessary to maintain the word at each node?

2. If your input alphabet is large, it will be non-trivial to look for a branch
out of a node which is labeled with a specific symbol. Devise an efficient
implementation of the tree in this case.

3. Suppose that the string Ophelia appears in the text, but none of its pre-
fixes do. How many occurrences of this string should be seen before it is
encoded as a word?

13

0, <>

1,t 2,a 3,c

4,ca5,ta 6,cc7,ag

t a c

a g a c

c

8,tac

Figure 2: Implementation of the dictionary in Lempel-Ziv Algorithm

Acknowledgment I am grateful to Thierry Joffrain for helping me write part
of section 2.

References

[1] M. Burrows and D. J. Wheeler. A Block-sorting Lossles Data Compression
Algorithm. Technical Report 124, Digital, SRC Research Report, May 1994.

[2] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Addison-Wesley, Reading, Massachusetts, 1997.

[3] Donald E. Knuth. The Complexity of Songs. Communications of the ACM,
27(4):344–348, April 1984.

[4] Claude E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27:379–423, 1948.

[5] Claude E. Shannon. Prediction and entropy of printed English. The Bell
System Technical Journal, 30:50–64, 1950.

[6] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate
coding. IEEE Transactions on Information Theory, IT-24(5):530–536, Sept.
1978.

14

