
DEPARTMENT OF COMPUTER SCIENCES

A Language for Task Orchestration and its Semantic
Properties

David Kitchin, William Cook and Jayadev Misra

Department of Computer Science
University of Texas at Austin

Email: fdkitchin,wcook,misrag@cs.utexas.edu
web: http://www.cs.utexas.edu/users/wcook/projects/orc/

UNIVERSITY OF TEXAS AT AUSTIN 0

DEPARTMENT OF COMPUTER SCIENCES

Overview of Orc

� Orchestration language.

– Invoke services by calling sites
– Manage time-outs, priorities, and failures� Structured concurrent programming. A Program execution

– calls sites,
– publishes values.� Simple calculus, with only 3 combinators.

– Semantics described by labeled transition system and traces
– Easy to create and terminate processes� Prototype implementation available.

UNIVERSITY OF TEXAS AT AUSTIN 1

DEPARTMENT OF COMPUTER SCIENCES

Structure of Orc Expression

� Simple: just a site call, CNN (d)
Publishes the value returned by the site.� composition of two Orc expressions:

do f and g in parallel f j g Symmetric composition
for all x from f do g f >x> g Piping
for some x from g do f f where x:2 g Asymmetric composition

UNIVERSITY OF TEXAS AT AUSTIN 2

DEPARTMENT OF COMPUTER SCIENCES

Symmetric composition: f j g

CNN j BBC : calls both CNN and BBC simultaneously.

Publishes values returned by both sites. (0 , 1 or 2 values)� Evaluate f and g independently.� Publish all values from both.� No direct communication or interaction between f and g .
They may communicate only through sites.

UNIVERSITY OF TEXAS AT AUSTIN 3

DEPARTMENT OF COMPUTER SCIENCES

Pipe: f >x> g
For all values published by f do g . Publish only the values from g .� CNN >x> Email(address; x)

Call CNN . Bind result (if any) to x . Call Email(address; x) .

Publish the value, if any, returned by Email .� (CNN j BBC) >x> Email(address; x)
May call Email twice. Publishes up to two values from Email .

Notation:
Write f � g for f >x> g if x unused in g .
Precedence: f >x> g j h >y> u(f >x> g) j (h >y> u)

UNIVERSITY OF TEXAS AT AUSTIN 4

DEPARTMENT OF COMPUTER SCIENCES

Schematic of piping

f

g1g0 g2

Figure 1: Schematic of f >x> g

UNIVERSITY OF TEXAS AT AUSTIN 5

DEPARTMENT OF COMPUTER SCIENCES

Asymmetric parallel composition: (f where x:2 g)
For some value published by g do f . Publish only the values from f .Email(address; x) where x:2 (CNN j BBC)
Binds x to the first value from CNN j BBC .� Evaluate f and g in parallel.

Site calls that need x are suspended; other site calls proceed.(M j N(x)) where x:2 g� When g returns a value, assign it to x and terminate g .
Resume suspended calls.� Values published by f are the values of (f where x:2 g) .

UNIVERSITY OF TEXAS AT AUSTIN 6

DEPARTMENT OF COMPUTER SCIENCES

Some Fundamental Sites

0 : never responds.let(x; y; � � �) : returns a tuple of its argument values.if (b) : boolean b ,
returns a signal if b is true; remains silent if b is false.Signal returns a signal immediately. Same as if (true) .Rtimer(t) : integer t , t � 0 , returns a signal t time units later.

UNIVERSITY OF TEXAS AT AUSTIN 7

DEPARTMENT OF COMPUTER SCIENCES

Expression Definition

MailOn
e(a) �Email(a;m) wherem:2 (CNN j BBC)MailLoop(a; t) �MailOn
e(a) � Rtimer(t) � MailLoop(a; t)� Expression is called like a procedure.
May publish many values. MailLoop does not publish a value.� Site calls are strict; expression calls non-strict.

UNIVERSITY OF TEXAS AT AUSTIN 8

DEPARTMENT OF COMPUTER SCIENCES

Metronome

Publish a signal at every time unit.Metronome � Signal j Rtimer(1) �Metronome
S R

S R

Publish n signals.BM (0) � 0BM (n) � Signal j Rtimer(1) � BM (n� 1)

UNIVERSITY OF TEXAS AT AUSTIN 9

DEPARTMENT OF COMPUTER SCIENCES

Recursive definition with time-out

Call a list of sites.

Count the number of responses received within 10 time units.tally([℄) � let(0)tally(M : MS) � u+ v
whereu:2 M � let(1) j Rtimer(10) � let(0)v:2 tally(MS)

UNIVERSITY OF TEXAS AT AUSTIN 10

DEPARTMENT OF COMPUTER SCIENCES

Time-out

Return (x; true) if M returns x before t , and (�; false) otherwise.

let(z; b)

where(z; b):2M >x> let(x; true)j Rtimer(t) >x> let(x; false)

UNIVERSITY OF TEXAS AT AUSTIN 11

DEPARTMENT OF COMPUTER SCIENCES

Fork-join parallelism

Call M and N in parallel.

Return their values as a tuple after both respond.let(u; v)

where u:2Mv:2 N
UNIVERSITY OF TEXAS AT AUSTIN 12

DEPARTMENT OF COMPUTER SCIENCES

Barrier Synchronization in M � f j N � g

f and g start only after both M and N complete.

(let(u; v)

where u:2Mv:2 N)� (f j g)
UNIVERSITY OF TEXAS AT AUSTIN 13

DEPARTMENT OF COMPUTER SCIENCES

Arbitration

In CCS: �:P + �:Q

In Orc:if (b) � P j if (:b) � Q
whereb:2 Alpha � let(true) j Beta � let(false)

Orc does not permit non-deterministic internal choice.

UNIVERSITY OF TEXAS AT AUSTIN 14

DEPARTMENT OF COMPUTER SCIENCES

Priority

� Publish N ’s response asap, but no earlier than 1 unit from now.Delay � (Rtimer(1) � let(u)) where u:2 N� Call M , N together.

If M responds within one unit, take its response.

Else, pick the first response.let(x) where x:2 (M j Delay)

UNIVERSITY OF TEXAS AT AUSTIN 15

DEPARTMENT OF COMPUTER SCIENCES

Parallel or

Sites M and N return booleans. Compute their parallel or.ift(b) = if (b) � let(true) : returns true if b is true ; silent otherwise.ift(x) j ift(y) j or(x; y)

wherex:2M; y:2 N
To return just one value:let(z)

wherez:2 ift(x) j ift(y) j or(x; y)x:2My:2 N
UNIVERSITY OF TEXAS AT AUSTIN 16

DEPARTMENT OF COMPUTER SCIENCES

Formal Syntax

f; g; h 2 Expr ::= M(p) Site calljj E(p) Expression calljj f >x> g Sequential compositionjj f j g Symmetric compositionjj f where x:2 g Asymmetric compositionp 2 A
tual ::= x jj v jjMDefn: ::= E(x) � f

UNIVERSITY OF TEXAS AT AUSTIN 17

DEPARTMENT OF COMPUTER SCIENCES

Transitions, Events

f a! f 0 : f may engage in event a and transit to f 0 .
Base eventsBaseEvent ::= !v publishjj � internal eventjjMk(v) Site call with handle kjj k?v Response

Response is outside the control of Orc.

UNIVERSITY OF TEXAS AT AUSTIN 18

DEPARTMENT OF COMPUTER SCIENCES

Rules for Site Call

k freshM(v) Mk(v)! ?k
?k k?v! let(v)

let(v) !v! 0

UNIVERSITY OF TEXAS AT AUSTIN 19

DEPARTMENT OF COMPUTER SCIENCES

Symmetric Composition

f a! f 0f j g a! f 0 j g
g a! g0f j g a! f j g0

UNIVERSITY OF TEXAS AT AUSTIN 20

DEPARTMENT OF COMPUTER SCIENCES

Piping

f a! f 0 a 6= !vf >x> g a! f 0 >x> g
f !v! f 0f >x> g �! (f 0 >x> g) j [v=x℄:g

UNIVERSITY OF TEXAS AT AUSTIN 21

DEPARTMENT OF COMPUTER SCIENCES

Asymmetric Composition

f a! f 0f where x:2 g a! f 0 where x:2 g

g !v! g0f where x:2 g �! [v=x℄:f

g a! g0 a 6= !vf where x:2 g a! f where x:2 g0

UNIVERSITY OF TEXAS AT AUSTIN 22

DEPARTMENT OF COMPUTER SCIENCES

Expression Call

[[E(x) � f ℄℄ 2 DE(p) �! [p=x℄:f

UNIVERSITY OF TEXAS AT AUSTIN 23

DEPARTMENT OF COMPUTER SCIENCES

Rulesk freshM(v) Mk(v)! ?k?k k?v! let(v)let(v) !v! 0f a! f 0f j g a! f 0 j gg a! g0f j g a! f j g0[[E(x) � f ℄℄ 2 DE(p) �! [p=x℄:f
f a! f 0 a 6= !vf >x> g a! f 0 >x> gf !v! f 0f >x> g �! (f 0 >x> g) j [v=x℄:gf a! f 0f where x:2 g a! f 0 where x:2 gg !v! g0f where x:2 g �! [v=x℄:fg a! g0 a 6= !vf where x:2 g a! f where x:2 g0

UNIVERSITY OF TEXAS AT AUSTIN 24

DEPARTMENT OF COMPUTER SCIENCES

Example

((M(x) j let(x)) >y> R(y)) where x:2 (N j S)Sk!fCall S : S Sk! ?k ; N j S Sk! N j ?kg((M(x) j let(x)) >y> R(y)) where x:2 (N j ?k)Nl!fCall N g((M(x) j let(x)) >y> R(y)) where x:2 (?l j ?k)l?5!f ?l l?5! let(5) ; ?l j ?k l?5! let(5) j ?kg((M(x) j let(x)) >y> R(y)) where x:2 (let(5) j ?k)

UNIVERSITY OF TEXAS AT AUSTIN 25

DEPARTMENT OF COMPUTER SCIENCES

Example((M(x) j let(x)) >y> R(y)) where x:2 (let(5) j ?k)�!f let(5) !5! 0 ; let(5) j ?k !5! 0 j ?kg(M(5) j let(5)) >y> R(y)�!f let(5) !5! 0 ; M(5) j let(5) !5! M(5) j 0 ;f !v! f 0 implies f >y> g �! (f 0 >y> g) j [v=y℄:gg((M(5) j 0) >y> R(y)) j R(5)Rn(5)!fcall R with argument (5)g((M(5) j 0) >y> R(y)) j ?n

UNIVERSITY OF TEXAS AT AUSTIN 26

DEPARTMENT OF COMPUTER SCIENCES

Example

((M(5) j 0) >y> R(y)) j ?nn?7!f ?n n?7! let(7)g((M(5) j 0) >y> R(y)) j let(7)!7!f f j let(7) !7! f j 0g((M(5) j 0) >y> R(y)) j 0
The sequence of events: Sk Nl l?5 � � Rn(5) n?7 !7

The sequence minus � events: Sk Nl l?5 Rn(5) n?7 !7

UNIVERSITY OF TEXAS AT AUSTIN 27

DEPARTMENT OF COMPUTER SCIENCES

Executions and Traces

Define f �) f f a! f 00; f 00 s) f 0f as) f 0

� Given f s) f 0 , s is an execution of f .� A trace is an execution minus � events.� The set of executions of f (and traces) are prefix-closed.

UNIVERSITY OF TEXAS AT AUSTIN 28

DEPARTMENT OF COMPUTER SCIENCES

Laws, using strong bisimulation

� f j 0 � f� f j g � g j f� f j (g j h) � (f j g) j h� f >x> (g >y> h) � (f >x> g) >y> h , if h is x-free.� 0 >x> f � 0� (f j g) >x> h � f >x> h j g >x> h� (f j g) where x:2 h � (f where x:2 h) j g , if g is x-free.� (f >y> g) where x:2 h � (f where x:2 h) >y> g , if g is x-free.� (f where x:2 g) where y:2 h � (f where y:2 h) where x:2 g ,
if g is y -free,h is x-free.

UNIVERSITY OF TEXAS AT AUSTIN 29

DEPARTMENT OF COMPUTER SCIENCES

Relation � is an equality

Given f � g , show

1. f j h � g j hh j f � h j g

2. f >x> h � g >x> hh >x> f � h >x> g
3. f where x:2 h � g where x:2 hh where x:2 f � h where x:2 g

UNIVERSITY OF TEXAS AT AUSTIN 30

DEPARTMENT OF COMPUTER SCIENCES

Treatment of Free Variables

Closed expression: No free variable.
Open expression: Has free variable.� Law f � g holds only if both f and g are closed.

Otherwise: let(x) � 0
But let(1) >x> 0 6= let(1) >x> let(x)� Then we can’t show let(x) j let(y) � let(y) j let(x)

UNIVERSITY OF TEXAS AT AUSTIN 31

DEPARTMENT OF COMPUTER SCIENCES

Substitution Event

f [v=x℄! [v=x℄:f (SUBST)

� Now, let(x) [1=x℄! let(1) .

So, let(x) 6= 0� Earlier rules apply to base events only.

From f [v=x℄! [v=x℄:f , we can not conclude:f j g [v=x℄! [v=x℄:f j g
UNIVERSITY OF TEXAS AT AUSTIN 32

DEPARTMENT OF COMPUTER SCIENCES

Traces as Denotations

Define Orc combinators over trace sets, S and T . Define:S j T , S >x> T , S where x:2 T .

Notation: hfi is the set of traces of f .

Theoremhf j gi = hfi j hgihf >x> gi = hfi >x> hgihf where x:2 gi = hfi where x:2 hgi

UNIVERSITY OF TEXAS AT AUSTIN 33

DEPARTMENT OF COMPUTER SCIENCES

Expressions are equal if their trace sets are equal

Define: f �= g if hfi = hgi .
Theorem (Combinators preserve �=)

Given f �= g and any combinator � : f � h �= g � h , h � f �= h � g

Specifically, given f �= g

1. f j h �= g j hh j f �= h j g

2. f >x> h �= g >x> hh >x> f �= h >x> g
3. f where x:2 h �= g where x:2 hh where x:2 f �= h where x:2 g

UNIVERSITY OF TEXAS AT AUSTIN 34

DEPARTMENT OF COMPUTER SCIENCES

Monotonicity, Continuity

� Define: f v g if hfi � hgi .
Theorem (Monotonicity) Given f v g and any combinator �f � h v g � h , h � f v h � g� Chain f : f0 v f1; � � � fi v fi+1; � � � .

Theorem: t(fi � h) �= (tf) � h .

Theorem: t(h � fi) �= h � (tf) .

UNIVERSITY OF TEXAS AT AUSTIN 35

DEPARTMENT OF COMPUTER SCIENCES

Least Fixed Point

M � S j R �MM0 �= 0Mi+1 �= S j R �Mi , i � 0M is the least upper bound of the chain M0 v M1 v � � �

UNIVERSITY OF TEXAS AT AUSTIN 36

DEPARTMENT OF COMPUTER SCIENCES

Weak Bisimulation

signal � f �= ff >x> let(x) �= f
UNIVERSITY OF TEXAS AT AUSTIN 37

DEPARTMENT OF COMPUTER SCIENCES

Theoretical Justification for Simplicity of Orc

� Simple trace semantics.� Monotonicity, continuity of the combinators.� Least fixed point characterizations of recursive definitions.� Enjoys properties of functional programs, yet highly non-detrministic.

UNIVERSITY OF TEXAS AT AUSTIN 38

DEPARTMENT OF COMPUTER SCIENCES

Extensions

� Time� Synchrony� Immediate sites

UNIVERSITY OF TEXAS AT AUSTIN 39

