NG

DEPARTMENT OF COMPUTER SCIENCES —\

A Language for Task Orchestration and its Semantic
Properties

David Kitchin, William Cook and Jayadev Misra

Department of Computer Science
University of Texas at Austin

Email: {dki t chi n, wcook, m sra}@s. ut exas. edu
web: htt p: //wwv. cs. ut exas. edu/ user s/ wcook/ pr oj ect s/ or c/

-

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Overview of Orc I

Orchestration language.

— Invoke services by calling sites
— Manage time-outs, priorities, and failures
Structured concurrent programming. A Program execution

— calls sites,
— publishes values.

Simple calculus, with only 3 combinators.

— Semantics described by labeled transition system and traces
— Easy to create and terminate processes

Prototype implementation available.

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Structure of Orc Expression |

e Simple: just a site call, CNN(d)

Publishes the value returned by the site.

e composition of two Orc expressions:

do f and g in parallel flg Symmetric composition
forall x from fdo g f >x>g Piping
forsome x from gdo f f wherexz:€ ¢ Asymmetric composition

- J

DEPARTMENT OF COMPUTER SCIENCES ﬂ

Symmetric composition: f | g

CNN | BBC': calls both CNN and BBC simultaneously.

Publishes values returned by both sites. (0, 1 or 2 values)

e Evaluate f and g independently.
e Publish all values from both.

e No direct communication or interaction between f and g.
They may communicate only through sites.

- J

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Pipe: f x> g |

For all values published by f do g¢. Publish only the values from g.

e CNN >z> Email(address,)
Call CNN. Bind result (if any) to x. Call Email(address,x).

Publish the value, if any, returned by Emaszl.

e (CNN | BBC) >z> Email(address,x)

May call Email twice. Publishes up to two values from Email.

Notation:
Write f s> g for f >x> g If x unusedin g.
Precedence: f >x>g |h >y> u

(f >z>9g) | (h >y> u)
N Y

NG

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Schematic of piping |

g0 gl @2

Figure 1. Schematic of f >z> ¢

DEPARTMENT OF COMPUTER SCIENCES ﬂ

Asymmetric parallel composition: (f where x:€ g)

For some value published by ¢ do f. Publish only the values from f.
Email(address,) where z:€ (CNN | BBC)
Binds =z to the first value from CNN | BBC.

e Evaluate f and ¢ in parallel.
Site calls that need x are suspended; other site calls proceed.
(M | N(x)) where z:€ g

e When g returns a value, assign itto z and terminate g.
Resume suspended calls.

e Values published by f are the values of (f where z:€ g).

- J

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Some Fundamental Sites I

0: never responds.
let(x,y,---): returns a tuple of its argument values.

if (b): boolean b,
returns a signal if b is true; remains silent if b is false.

Signal returns a signal immediately. Same as if (true).

Rtimer(t): integer ¢, t > 0, returns a signal ¢ time units later.

.)

-

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Expression Definition |

MailOnce(a) A
Email(a,m) where m:€ (CNN | BBC)

MailLoop(a,t) A
MailOnce(a) > Rtimer(t) > MailLoop(a,t)

Expression is called like a procedure.
May publish many values. MailLoop does not publish a value.

e Site calls are strict; expression calls non-strict.

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Metronome I

Publish a signal at every time unit.

Metronome A Signal | Rtimer(1) > Metronome

R
S R
Publish n signals.

0
Signal | Rtimer(1) > BM(n — 1)

> >

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Recursive definition with time-out I

Call a list of sites.

Count the number of responses received within 10 time units.

tally([]) A let(0)
tally(M : MS) A
u—+v
where

we M > let(l) | Rtimer(10) > let(0)
v:e tally(MS)

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Time-out I

Return (z,true) if M returns x before ¢, and (—,false) otherwise.

let(z,b)
where
(z,b):€
M >z> let(x,true)
| Rtimer(t) >x> let(x,false)

N R/

UN|VERS|TY OF TEXAS AT AUST|N ___|] 11

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Fork-join parallelism |

Call M and N In parallel.

Return their values as a tuple after both respond.

let(u,v)
where wu:c M
vie N

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Barrier Synchronizationin = M s f | N sg |

f and ¢ start only after both M and N complete.

(let(u,v)
where u:€ M
v:e N)
> (f19)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Arbitration I

In CCS: a.P + 8.0

In Orc:

if () > P |if(=b) > Q
where
b:c Alpha > let(true) | Beta > let(false)

Orc does not permit non-deterministic internal choice.

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Priority |

e Publish N's response asap, but no earlier than 1 unit from now.
Delay A (Rtimer(1l) > let(u)) where u:€ N

e Call M, N together.
If M responds within one unit, take its response.

Else, pick the first response.

let(z) where z:€ (M | Delay)

N R/

UN|VERS|TY OF TEXAS AT AUST|N ___|] 15

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Parallel or I

Sites M and N return booleans. Compute their parallel or.

ift(b) = if (b) > let(true): returns true if b is true; silent otherwise.

ift(z) | ift(y) | or(z,y)
where
x:e M, ye N

To return just one value:

let(z)
where
z:€ ift(z) | ift(y) | or(z,y)
x.e M
y:e N

N R/

NG

f,qg,h e FExpr

p € Actual

Defn.

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Formal Syntax |

= M(p) Site call
E(p) Expression call
f >x>g Sequential composition
flg Symmetric composition
f where x:€ ¢ Asymmetric composition

= zx|v| M

E(x) A f

17

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Transitions, Events |

f 5 f': f may engage in event « and transitto f’.

Base events

BaseFEvent .= lv publish
| 7 internal event
| My (v) Site call with handle k
| k7 Response

Response is outside the control of Orc.

N R/

NG

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Rules for Site Call I

UNIVERSITY OF TEXAS AT AUSTIN

k fresh

M(v) M g
% Y let(v)

let(v) — 0

19

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Symmetric Composition |

f = f
flg = f'lg
g =g
flg = fld

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

a # v

>r> g

fszg = (f >z 9) | [v/z].g

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Asymmetric Composition I

f where x:€ where z:€ g

f where z:€ ¢ = [v/z].f

g = g a # v
f where z:€ ¢ = f where z:€ ¢’

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Expression Call |

[E(x) A flleD
E(p) = [p/z].f

N R/

k fresh

M(v) M o

‘ Rules |

DEPARTMENT OF COMPUTER SCIENCES —\

f= f’ a# v
fszsg = [>eg
fEp
fezg = (f >z 9) | [v/z]g
f=f
f where z:€ ¢ = f' wherez:€ g
g %4

f where z:€ g = [v/z].f

g = g a # v

f where z:€ ¢ = f where z:€ ¢/

UNIVERSITY OF TEXAS AT AUSTIN

24

R/

NG

‘ Example |

(M(z) |let(z)) >y> R(y)) wherez:€ (N | S5)

ﬂ“>{Ca|| S: 5 % [N|Sﬂ“>N|?k}

(M (z) | let(z)) >y> R(y)) where z:€ (N | 7k)

Mrcal N)

(M (z) | let(z)) >y> R(y)) where z:€ (7l | 7k)

20 B8 let(5): 70| %k D let(5) | 7k

(M (z) | let(z)) >y> R(y)) where z:€ (let(5) | 7k)

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

25

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Example |

(M (z) | let(z)) >y> R(y)) where z:€ (let(5) | 7k)
S let(5) 3 0; let(5) |k = 0] ?%k)
(M(5) | let(5)) >y> R(y)

S {let(5) = 0; M(5) | let(5) 3 M(5) | 0;
f2 fimplies f sysg 5 (f sy>9) | [v/ylg)

((M(5) |0) >y> R(y)) | R(5)
Ri({%all R with argument (5)}
((M(5) [0) >y> R(y)) | ™n

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Example |

(M) |0) >y> R(y)) | ™n

n?7

W M let(7))

(M(5) | 0) >y> R(y)) | let(7)
BLF let(ry 5 f |0}

((M(5) [0) >y> R(y)) |0

The sequence of events: Sk Ny 175 7 7 Ry(b) n?7 17
The sequence minus 7 events: S, N; (75 R,(5) n?7 7

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Executions and Traces I

fS Sy
[

Define f=1

e Given f = f/, sisan execution of f.
e A trace IS an execution minus 7 events.

e The set of executions of f (and traces) are prefix-closed.

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Laws, using strong bisimulation |

f10 ~ f

flg ~ glf

fllglh) ~ (Flg)lh

f>x> (9 >y h) ~ (f >z>g9) >y> h, if his x-free.
0 >z>f ~ 0

(flg) >z>h ~ f>z>hl|g >x>h

(f | g) wherez:e h ~ (f wherexz:€ h) | g, if ¢gis z-free.
(f >y> g) wherex:e h ~ (f wherex:€ h) >y> g,If gis z-free.
(

f where x:€ g) wherey:€ h ~ (f where y:€ h) where z:€ g,
if gis y-free,
h is z-free.

R/

‘Relation ~ IS an equality I

Given f ~ g, show

2. f>x>h ~ g >z>h
h>x>f ~ h>x>g

3. f wherexz:e h ~ g wherex:€ h
h where z:€ f ~ h wherex:€ g

NG

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

30

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Treatment of Free Variables I

Closed expression: No free variable.
Open expression: Has free variable.

e Law f ~ ¢ holdsonlyif both f and ¢ are closed.
Otherwise: let(z) ~ 0
But let(1) x> 0 # let(l) >x> let(x)

e Then we can’'t show let(x) |let(y) ~ let(y) | let(x)

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Substitution Event I

Y el f (SUBST)

o Now, let(z) "L jet(1).

So, let(z) # 0

e Earlier rules apply to base events only.

From f /) lv/x|.f, we can not conclude:

flg ™S w/alflg

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Traces as Denotations I

Define Orc combinators over trace sets, S and 7. Define:

S|T, S >x>T, S wherex:€T.

Notation: (f) is the set of traces of f.

Theorem
(f19) = (f) [{9)
(f >z g) = (f) >z (9)

(f where z:€ g) (f) where z:€ (g)

N R/

‘ Expressions are equal If their trace sets are equal |

Define: f = gif (f) = (g).

Theorem (Combinators preserve =)

Given f = g and any combinator x: fxh = gxh, hxf = hxg
Specifically, given f = g

1. flh=g|h
hlf=hlg

2. f>x>h = g >xz>h
h sx> f = h >z> g

3. f wherex:€c h = g wherez:€ h
h where x:€ f = h where x:€ g

N

DEPARTMENT OF COMPUTER SCIENCES —\

DEPARTMENT OF COMPUTER SCIENCES —\

NG

‘ Monotonicity, Continuity |

e Define: f C gif (f) C (g).
Theorem (Monotonicity) Given f C g and any combinator x

fxh ©E gxh, hxf C hxg

e Chain f: fo C fi,---fi E fig1,---.
Theorem: U(f; x h)
Theorem: U(h * f;)

UNIVERSITY OF TEXAS AT AUSTIN

NG

M

My

| %

MZ+1

‘ Least Fixed Point I

S|R>M

= 0
= S|R>M;, i>0

M is the least upper bound of the chain My, C M; C --.

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

36

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Weak Bisimulation I

signal > f
f >x> let(x)

112112
-

N R/

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Theoretical Justification for Simplicity of Orc |

e Simple trace semantics.

e Monotonicity, continuity of the combinators.
e Least fixed point characterizations of recursive definitions.

e Enjoys properties of functional programs, yet highly non-detrministic.

. __

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Extensions I

e Time

e Synchrony

e Immediate sites

N R/

