
A Denotational Semantic Theory of Concurrent

Systems

Jayadev Misra

Dept. of Computer Science, Univ. of Texas, Austin, 78712, USA

Abstract. This paper proposes a general denotational semantic theory
suitable for most concurrent systems. It is based on well-known concepts
of events, traces and specifications of systems as sets of traces. Each
programming language combinator is modeled by a transformer that
combines the specifications of the components to yield the specification
of a system. We introduce smooth and bismooth transformers that corre-
spond to monotonic and continuous functions in traditional denotational
theory.We show how fairness under recursion can be treated within this
theory.

Keywords: Denotational semantics, Specification transformer, Smooth
transformer, Bismooth transformer, Specifications of recursive programs,
Fairness and recursion.

Note on Proofs

A complete paper, that includes proofs of all propositions in an Appendix, is at
http://www.cs.utexas.edu/users/misra/DenotationalSemantics.pdf

1 Introduction

This paper proposes a general denotational semantic theory suitable for most
concurrent systems. It is based on well-known concepts of events, traces and
specifications of systems as sets of traces.

A concurrent system consists of a number of components that are combined
using the combinators of a specific programming language. A specification of
a component is a prefix-closed set of traces. A transformer combines the spec-
ifications of the components to yield the specification of a system; thus, each
combinator of a programming language is modeled by a transformer. The two
most significant concepts in this paper are smooth and bismooth transformers.
A smooth transformer is a monotonic function on traces, ordered by prefixes.
A bismooth transformer is smooth, and, analogous to continuous functions in
traditional denotational theory [13], preserves the upward-closures of specifi-
cations. These transformers can model various features of concurrent systems
such as, concurrent interactions with memory and objects, independent as well
as causally dependent threads, unbounded non-determinism, shared resource,
deadlock, fairness, divergence and recursion.

2 Jayadev Misra

Treatment of recursion, Section 4, requires us to introduce bismooth trans-
former, the counterpart of a continuous function that preserves the limits of
chains (upward-closure) as well as the prefixes of traces (downward-closure). We
develop a version of the well-known fixed point theorem [8, 13] that shows that
first computing a simple fixed point and then taking its limit is appropriate for
bismooth transformers, see Section 4.4). Transformers that encode fairness are
smooth (monotonic) but not bismooth (continuous); so this theorem does not
apply . We generalize the least fixed point theorem, to min-max fixed point the-
orem, for smooth transformers that allows treatment of certain forms of fairness;
see Section 4.5 and Section 4.6.

Monotonic and continuous functions in denotational semantics operate on
elements of any complete partial order without any pre-assumed structure. Even
though smooth and bismooth transformers are the counterparts of monotonic
and continuous functions, they operate on specifications which have structure
as sets of traces. We exploit this structural information to obtain strong results
about various classes of transformers and fixed points.

We do not to develop the semantics of a specific programming language but
of transformers that are of general applicability in all conceivable concurrent
systems. Features of specific programming languages can be treated by combin-
ing a few elementary transformers, as we demonstrate in the example below.
The long-term goal of the research is to suggest a framework for analysis of
concurrent programming language constructs.

A motivating example Let ⊕ be a 3-way combinator so that in ⊕(A, B, C) syn-
chronization of the executions A and B initiates the execution of C. Opera-
tionally, A and B are parent threads that execute concurrently at start. Child
thread C starts executing only when the parents synchronize, by A engaging
in event e and B in e. In case both events occur, they have completed a “ren-
dezvous”, C is started and A and B resume execution. Neither e nor e is shown
explicitly as occurring in the execution in case of a rendezvous.

It is possible that a synchronization may never be completed even though one
of A and B, say A, has engaged in its synchronization event e. In that case, A

remains waiting to synchronize and C is never started, though B may continue
to execute forever or halt without synchronization.

We define a transformer ⊕′, corresponding to the combinator ⊕, that trans-
forms the specifications of A, B and C to yield the specification of ⊕(A, B, C).
The definition of ⊕′ uses a few transformers described in this paper.

Let the specifications of A, B and C be p, q and r, respectively. Introduce
C′ that behaves as C but indicates the start of its execution by a specific event
a; event a does not occur in p, q or r. The specification of C′ is cons(a, r) that
appends a as the first event to every trace in r; see the definition of cons in
Section 3.3. The execution of ⊕(A, B, C′) interleaves their individual executions
arbitrarily, subject to the constraint that the events e, e and a be synchronized.
The interleaved executions of A, B and C′ is given by their unfair merge, written
as p | q | cons(a, r); see Section 3.3. The synchronization of e, e and a is written
using a transformer, called rendezvous, that introduces a new event τ to indicate

A Denotational Semantic Theory of Concurrent Systems 3

the simultaneous occurrences of e, e and a; see Section 3.3. Finally, event τ is
removed from the specification, using transformer drop; see Section 3.3. Thus,

⊕′(p, q, r) = drop({τ}, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

We can now assert certain properties of ⊕′. For example, that it is bismooth,
because all the transformers in its definition are bismooth and composition of
bismooth transformers is bismooth.

2 Basic Concepts

A trace represents one possible execution of a component. The specification of a
component is a set of prefix-closed traces. We define these concepts and explore
their properties in this section.

2.1 Event and Trace

Event Event types are uninterpreted symbols drawn from an event alphabet.
The choice of event types for a component constitutes a design decision about the
granularity at which we may wish to examine the component. For the systems
that we consider in this paper, event types could be many including, for instance:
input and output, binding of a parameter to a value, calling a shared resource for
read/write access, receiving a response from a resource, locking and unlocking
of a resource, allocation and disposal of storage, or publishing a value as a result
of a computation. Each event is an instance of some event type in an execution.
Instances of the same event type are distinguished, say by subscripts, so that all
events in an execution are distinct. The semantic theory makes no assumption
about the meanings of events.

Trace A trace is the formal counterpart of partial or complete execution of
a program. A trace includes a sequence of events, the events occurring in the
execution, and the state at the end of the execution if it is finite; the state is
called status in this paper1. An execution that has halted, i.e., one that can
engage in no further event, has status H . A finite execution that is waiting for
an event to happen or waiting to halt has status W . An infinite execution has
status D, representing divergence. A finite execution may also have status D;
this represents an infinite execution that has only a finite prefix of visible events;
see Section 2.4. A trace is written in the form y[m] where y is the status from
{H, W, D}, and m is a finite or infinite sequence of distinct events. If y is H or
W then m is finite.

For notational simplicity, different instances of the same event are sometimes
written as the same symbol in examples; thus, given that tl is an event type, we
may abbreviate the trace W [tl1 tl2] by W [tl tl].

1 We use the term status to distinguish the state of execution from the states of other
mutable objects in the system.

4 Jayadev Misra

Example Consider a component that has the following behavior. It tosses a
coin repeatedly until the coin lands heads. Then it halts. Let hd and tl denote
the events of coin landing heads and tails, respectively, and tli a sequence of
length i of tl events. Then any finite execution is represented by, for some i ≥ 0,
either (1) W [tli], (2) W [tli hd], or (3) H [tli hd]. If the coin is fair we expect
it to land heads eventually; so, these are the only traces of the component. If
the coin is unfair, it is possible to have an infinite sequence of tails, and the
corresponding trace is D[tlω]. If the coin toss events are invisible, then the only
traces in an external spec for fair coin are W [] and H [], and for unfair coin are
W [], H [] and D[]. Thus, with an unfair coin an external observer can assert
only that this component may eventually halt or may compute forever.

The component described in this example does not interact with any other
component. To see interaction, suppose the component does not actually toss the
coin but requests another component to do so and communicate the result to it.
Let toss be a request for a toss, and rcvhd and rcvtl are the events correspond-
ing to the responses received when the toss lands heads and tails, respectively;
assume that a response is guaranteed. A trace of the component with a fair
coin is, for some i ≥ 0, either (1) W [(toss rcvtl)i], (2) W [(toss rcvtl)i toss],
(3) W [(toss rcvtl)i toss rcvhd], or (4) H [(toss rcvtl)i toss rcvhd]. An external
observer can assert eventual termination, because there is no external event for
which the program may wait forever. With an unfair coin there is an additional
trace D[(toss rcvtl)ω], and termination can not be asserted.

Tuples of traces In this paper, transformers are functions that map a set of traces
to a set of traces. In dealing with programs that contain several components,
a transformer, such as merge, maps each tuple of traces, with one trace from
each component, to a set of possible traces of the program. In most contexts the
distinction between a trace and a tuple of traces is immaterial, so we use the
term “trace” to denote a single trace or a finite tuple of traces, the tuple size
depending on the context. A tuple of traces is finite if each component trace is
finite.

Traceset A traceset is a non-empty set of traces. A finitary traceset is one in
which each trace is finite. Tracesets are partially ordered by subset order.

2.2 Prefix Order over Traces

Informally, trace s is a prefix of t when the execution corresponding to s can
possibly be extended to that for t. For sequences m and n, let m ⊑ n denote that
m is a prefix of n. Impose a partial order ≤ over the status values as follows:
W ≤ H and W ≤ D. The partial order mimics the causal order in an execution
so that W [m] may evolve to H [m] by changing state silently, and W ≤ D because
any finite computation precedes an extension of it to an infinite computation.

Trace y[m] is a prefix of z[n] (z[n] an extension of y[m]) if y ≤ z and m ⊑ n.
And, y[m] is a proper prefix of z[n], if y[m] ≤ z[n] and y[m] 6= z[n]. So, a trace

A Denotational Semantic Theory of Concurrent Systems 5

with status H or D has no extension. An infinite trace is a prefix only of itself.
And W [] ≤ y[m] for every trace y[m].

For tuples of traces define one tuple as a prefix of another if each entry
in the former tuple is a prefix of the corresponding entry in the latter. And
(s0, s1, · · · , sk) < (t0, t1, · · · , tk) if si ≤ ti for each i and sj < tj for some j.

Properties of prefix order The following properties are easy to prove.

1. Prefix order, ≤, is a partial order over traces.
2. The inverse of proper prefix order, >, is a well-founded order over traces.
3. The set of prefixes of a trace are totally ordered.

An Induction Principle over traces The inverse of proper prefix order, >, is
a well-founded order even in the presence of infinite traces. This allows us to
formulate the following induction principle. Let P be a predicate over traces,
both finite and infinite.

If for all t, (∀s : s < t : P (s)) ⇒ P (t),
then P (t) holds for all traces t.

2.3 Prefix Closure

The prefix-closure, also called downward-closure, of trace t is denoted by t∗; it is
the set of all prefixes of t. For a traceset p, p∗ is the set of prefixes of all traces
of p. That is,

t∗ = {s s ≤ t} and p∗ = ∪{t∗ t ∈ p}.

It follows that for traces s and t, (s, t)∗ = s∗ × t∗.

Finite Prefix-Closure Denote the set of finite prefixes of trace t by t∗′ . Define
p∗′ for traceset p analogously. Note that an infinite trace t is not in t∗′ , though
t ∈ t∗.

Notational Conventions

1. Prefix-closure and finite prefix-closure operators have the highest binding
power among all operators.

2. Prefix closure and finite prefix-closure apply to event sequences, not just
traces and tracesets.

3. Write C∗(p) for (C(p))∗ for any p in any context C.
4. (singletons and sets) A singleton trace may appear wherever a traceset is

expected to appear. That is, if C(p) is a valid expression for any traceset p,
so is C(t) for a trace t, and it denotes C({t}).
Conversely, if C(t) is a valid expression for any trace t, so is C(p) for any
traceset p, and it denotes ∪t∈pC(t).

Thus, W [m∗] is a shorthand for {W [k] k ∈ m∗}. And, W∗[m] = (W [m])∗ =
{s s ≤ W [m]}.

6 Jayadev Misra

Elementary Properties of Prefix-Closure Below p and q are tracesets, and t any
trace. The following properties are easy to show. Closure expansion, item (4), is
used extensively in subsequent proofs.

1. Prefix-closure is an algebraic closure, i.e., for tracesets p and q,

(a) (extensive) p ⊆ p∗

(b) (monotonic) p ⊆ q ⇒ p∗ ⊆ q∗

(c) (idempotent) (p∗)∗ = p∗.

2. Finite prefix-closure of tracesets is monotonic and idempotent. Extensive
property does not hold for the traceset {t} where t is an infinite trace.

3. (t∗)∗′ = (t∗′)∗ = t∗′ .

4. (Closure expansion) For any trace z[m], z∗[m] = {z[m]} ∪ W [m∗′].

5. (closure distributes over set union) For a family F of tracesets, F possibly
infinite, (∪p∈F (p))∗ = (∪p∈F (p∗)).

6. (closure distributes over Cartesian product) (p × q)∗ = p∗ × q∗.

2.4 Specification

Informally, a specification of a component, henceforth abbreviated as spec, is a
set of traces, where each trace corresponds to an execution of the component
in some environment. Different traces may correspond to executions in different
environments. Properties of a component may be deduced from its spec, such as
that its publications are monotonic in value (a safety property), every execution
eventually halts (a progress property), or that the component’s execution may
deadlock (the spec includes a trace W [m] that has no extension).

Spec A spec is a prefix-closed traceset. A finitary spec is a spec consisting of
finite traces.

Note that a spec of n-tuples includes the bottom trace, (W [], W [], · · · , W []),
consisting of n individual empty traces.

Properties of Specs The proofs of the following properties are elementary.

1. For any traceset p, p∗ and p∗′ are both specs.

2. Union of a finite or infinite family of specs is a spec.

3. Intersection of a finite or infinite family of specs is a spec.

4. Cartesian product of a pair of specs is a spec.

Consider the coin toss example of Section 2.1. With a fair coin we expect the
spec to be H∗[tl

i hd], and for an unfair coin to be H∗[tl
i hd] ∪ {D[tlω]}.

A Denotational Semantic Theory of Concurrent Systems 7

Chains and their Limits A chain is a finitary spec whose elements are totally
ordered under ≤. A chain may be finite or infinite. For any trace t the set of its
finite prefixes, t∗′ , is a chain.

The limit of chain c, written as lim(c), is the least upper bound of the traces
in c with respect to the ≤ ordering. For a finite chain c, lim(c) is the longest
trace in c. For an infinite chain c, lim(c) is the unique infinite trace such that
every trace in c is its prefix. Note that lim(c) does not belong to c for infinite c

because c consists of finite traces only. Notationally, use lim(c) as a trace and
also as a singleton traceset.

Define the limit of a finite tuple of chains as the tuple of limits of the corre-
sponding chains. That is,

lim(c0, c1, · · · cn) = (lim(c0), lim(c1), · · · lim(cn))

Complete Lattice of Specs The least upper bound of a set of specs is their
union, and the greatest lower bound is the intersection. Thus, specs form a
complete lattice under subset order, where ⊥ = W [] and ⊤ is the union of all
specs.

3 Transformer

Any component of a system is either a primitive component or a structured com-
ponent. A primitive component is defined by its spec. A structured component
consists of one or more subcomponents that are combined using the combinators

of the language. A spec transformer, or simply a transformer, corresponding to
each combinator is a function mapping the Cartesian product of the specs of
the subcomponents to the spec of the structured component. The number of
subcomponents, therefore the length of the tuples in the argument of the trans-
former, is the arity of the transformer. A language semantic thus consists of the
specs of the primitive components and the transformers corresponding to each
combinator. For the moment assume that the domain of a transformer is the set
of all traces. We show how to restrict the domain of a transformer in Section 3.2.

Convention We develop the theory for transformers of arity 1, a transformer
that maps a spec to a spec. Generalizations for other arities are straightforward.
Examples of transformers of higher arity appear in Section 3.3, Section 3.3,
Section 3.3 and Section 3.3. For a transformer of arity 2 we adopt infix notation,
as in p ⊕ q.

We restrict ourselves to a class of transformers, called smooth. Smooth trans-
formers correspond to monotonic functions in denotational semantic theory. A
subset of smooth transformers, called bismooth, correspond to continuous func-
tions. We develop the theory of smooth transformers in this section and bismooth
transformers in Section 4.3.

8 Jayadev Misra

3.1 Trace-wise Transformer

A trace-wise transformer is a total function from traces to tracesets. Using the
notational convention introduced earlier, a trace-wise transformer f applied to
a traceset p is defined to be: f(p) = ∪{f(t) t ∈ p}. For trace-wise combinator
⊕ over a pair of specs, p ⊕ q = ∪{s ⊕ t s ∈ p, t ∈ q}.

Any transformer maps a spec to a spec. We restrict ourselves to trace-wise
transformers in this paper because a language combinator can combine only in-
dividual executions of its components. Non-determinism is represented by map-
ping a trace to a traceset, every trace of the latter corresponds to a possible
execution. The size of the result traceset is arbitrary, thus allowing unbounded
non-determinism.

Properties of Trace-wise Transformers The following properties follow
from the definition of trace-wise transformers.

1. A trace-wise transformer distributes over union (possibly infinite union) of
tracesets. That is, given a family F of tracesets, (∪p∈F f(p)) = f(∪p∈F (p)).

2. Composition of trace-wise transformers is a trace-wise transformer.
3. (Monotonicity) For trace-wise f and tracesets p and q,

p ⊆ q ⇒ f(p) ⊆ f(q).

A trace-wise transformer may not transform a spec to a spec, i.e., the result-
ing traceset may not be prefix-closed (consider a transformer that maps every
trace to W [a] where a is some event; the resulting traceset does not include W [],
hence, is not a spec). The smoothness condition, described below, guarantees this
property.

3.2 Smooth Transformer

A transformer f is smooth if and only if for any traceset p

f∗(p) = f(p∗), where f∗(p) stands for (f(p))∗.

And, f is finitely smooth if for finitary p, f∗(p) = f(p∗).

Properties of Smooth Transformers The following properties are proved in
Propositions 1–3.

1. A transformer f is smooth if and only if it preserves prefix-closure over
individual traces, i.e., f∗(t) = f(t∗), for every trace t.

2. A transformer is smooth if and only if it maps specs to specs.
3. Composition of smooth transformers is smooth.

Terminology and Notation Henceforth, “transformer” stands for “trace-wise
transformer” in this paper. For a binary smooth transformer ⊕ written in infix
style, (p ⊕ q)∗ = p∗ ⊕ q∗, for tracesets p and q.

A Denotational Semantic Theory of Concurrent Systems 9

Domain of a Transformer We have so far assumed that every transformer
is defined for all traces. In many cases a transformer f can meaningfully be
defined only over some domain dom(f); we assume that dom(f) is a spec. We
show how to extend the domain of a transformer while retaining its essential
properties. Specifically, we define transformer g over all traces that induces the
same mapping over dom(f) as f and retains smoothness and bismoothness.

For any t in dom(f) let g(t) = f(t). For t 6∈ dom(f) and finite t, let
g(t) = ∪{f(s) s ≤ t and s ∈ dom(f)}. For t 6∈ dom(f) and infinite t, let
g(t) = lim(g(t∗′)), where lim is defined in Section 2.4). It can be shown that if
f is smooth over the traces in dom(f) then so is g over all traces, and if f is
bismooth over any spec in dom(f) then so is g over all specs.

Note: For t 6∈ dom(f) and finite t, alternately let g(t) = f(s) where s is the
longest prefix of t in dom(f).

3.3 Some Elementary Smooth Transformers

In this section, we show a number of smooth transformers that are of general
utility. Transformer g with arguments is written as g(args, t) where args is a
set of parameters and t a trace. Here, g represents a family of transformers, one
transformer for each value of args. For a specific value of args we abbreviate
g(args, t) to f(t), and then prove the smoothness of f . Note that the identity
transformer, id(t) = t for all traces t, is smooth.

Status Map This is a family of transformers each member of which may change
the status of a trace but not its event sequence. Applying statusmap(y[m]), a
generic member of the family, yields y′[m] where y′ may differ from y only if
y = H , or y = D and m is finite; thus, statusmap(y[m]) = y[m], if y = W or m

is infinite. Every transformer in statusmap is smooth; see Proposition 4.

Choice The choice transformer, or, corresponds to a non-deterministic choice
between two components to execute. For components f and g with specs p and
q, f or g has the spec p ∪ q. As a trace-wise transformer: s or t = {s, t}. We
show that or is smooth, in Proposition 5.

Hide Transformer hide is parametrized by a set of events E, which may be finite
or infinite; hide(E, t) is the trace obtained after removing all events from t that
also occur in E. Application of hide may remove an unbounded, and possibly
infinite, number of events from a trace. For example, hide({a}, D[aω]) results in
D[]. To see hide is smooth see Proposition 6.

Drop Transformer drop is same as hide except that in drop(E, t) (1) the event
set E is finite, and (2) only the first occurrence, if any, of an event from E is
removed from t, but subsequent occurrences are retained. The proof that drop

10 Jayadev Misra

is smooth is similar to the proof for hide. The reason we treat drop separately
is that drop is bismooth —see Section 4.3— whereas hide is not. This property
permits drop, but not hide, to be freely used in recursive equations.

Cons Append a specific event a as the first event of every trace. To ensure that
a spec is transformed to a spec, cons(a, W []) includes W [].

cons(a, W []) = {W [], W [a]}, cons(a, y[m]) = {y[am]}

We show that cons is smooth in Proposition 7.

Filter A class of transformers, called filter, is essential for most applications
of this theory. A filter can be used to model interactions among components by
rejecting the traces that do not implement acceptable interactions, as in accesses
to shared resources. A filter can also model rendezvous-style interactions and
fairness constraints.

Associated with each filter is a predicate b over traces such that:

F1. b(W []) holds, and

F2. If b(t) holds then b(s) holds for all proper prefixes s of t, i.e., writing b(t∗′)
for the conjunction of b(s) over all finite prefixes s of t: b(t) ⇒ b(t∗′).

Filter f corresponding to predicate b accepts t iff b(t) holds and rejects it
otherwise. Thus, if a filter accepts a trace it accepts all prefixes of that trace;
equivalently, if it rejects a trace, it rejects all extensions of that trace. Since
b(W []) holds, not all traces are rejected. A filter applied to a spec retains only
its acceptable traces.

The natural definition of transformer f corresponding to filter predicate b is
f(t) = {t} if b(t) and {} otherwise. This definition violates the requirement that
f(t) be a traceset, a non-empty set of traces, for all t. So, we propose:

f(t) = {s s ≤ t and b(s)}

Transformer f is smooth; see Proposition 17.

Observe that for filter predicates b and b′, b ∧ b′ and b ∨ b′ are also filter
predicates. If transformers g and g′ implement b and b′ respectively, then g ◦ g′

implements b ∧ b′ and g(t) ∪ g′(t), for any trace t, implements the disjunction
of the filters. Any filter transformer is idempotent, and it distributes over union
and intersection of specs. The following identity is used in the min-max fixed
point theorem, Section 4.5. For filter g and specs p and q,

g(p ∩ q) = g(p) ∩ g(q) = g(p) ∩ q

A Denotational Semantic Theory of Concurrent Systems 11

Continuous vs. Discontinuous Filter We distinguish between two kinds of filters,
continuous and discontinuous, depending on the value of b(t) for infinite t. A
discontinuous filter models fairness wherein an infinite trace may be rejected even
though all its finite prefixes are accepted. A continuous filter rejects an infinite
trace only if some finite prefix of it is also rejected. Conversely, a continuous
filter accepts an infinite trace if all its finite prefixes are accepted.

Both types of filter predicates obey the conditions (F1) and (F2) given earlier.
Additionally, a continuous filter predicate b satisfies the stronger condition (F2’)
below in place of (F2):

F2’. b(t) ≡ b(t∗′), for every trace t.

Note that (F2) and (F2’) are equivalent for finite t. It is only for infinite t that
(F2’) imposes the additional constraint: b(t∗′) ⇒ b(t).

For a continuous filter f , we can let f(t) be the the longest prefix of t for
which b holds. This is defined for finite t because b(W []) holds, and for infinite
t because the longest prefix is t if b(t) holds and some finite prefix of t if ¬b(t)
holds. Continuous filters are always bismooth, discontinuous filters are not; see
Section 4.3.

Filters are some of the most useful transformers. The following sections list
special cases of filters that arise in concurrent programming.

Partitioning a filter Any filter can be written as a composition of two filters one
of which is continuous and the other rejects only infinite traces. That is, a filter
f can be written as finf ◦ ffin where (1) finf rejects trace t only if t is infinite,
and f rejects t though it accepts all finite prefixes of t, and (2) ffin rejects all
other traces, finite and infinite, that f rejects. It is possible that neither finf

nor ffin rejects any trace. Clearly, f = finf ◦ ffin. Further, ffin is a continuous
filter because whenever it rejects an infinite trace it also rejects a finite prefix of
it. And, if finf rejects any trace, it is a discontinuous filter.

Restrict by Inclusion of Events Reject a trace if it contains a specific event
a, or, more generally, an event from a specified set E. This is a filter because (1)
it accepts W [], and (2) if it accepts a trace, it accepts all its prefixes. The filter
is continuous.

The converse of this rejection criterion is not smooth: accept a trace only if
it is W [] or contains a specific event a. Then any trace that has a as its last
event is accepted but all its prefixes except W [] are rejected. Therefore, it may
transform a spec to a traceset that is not prefix-closed.

Restrict by Exclusion of Events Accept a trace only if it is W [] or its
first event is drawn from a specified set of events. This condition defines a filter
predicate b because: (1) b(W []) holds, and (2) if b(t) holds, it holds for all prefixes
of t. The filter is continuous. The requirement that the specified event be the first
one in the event sequence is crucial; without this requirement the transformer is
not smooth.

12 Jayadev Misra

The acceptance criterion here is stronger than a typical filter: whenever a
trace is accepted, all its extensions are also accepted.

Restrict by Precedence Relation Let R be a binary relation over events.
Define a transformer that accepts trace t iff for every (e, e′) in R, if e′ is in t

then e is also in t and e precedes e′. Thus, an acceptable trace is one that either
includes (1) none of e and e′, (2) just e, or (3) both e and e′ with e preceding
e′. It is easy to see that W [] is accepted and the prefix of an acceptable trace is
acceptable. Further, this transformer is a continuous filter.

Atom Atomicity is a fundamental notion in concurrent programming, partic-
ularly in the theory of transactions. Roughly, trace t is atomic with respect to
a specified set of events if all the specified events occur contiguously in some
order in t. We propose a more general definition that is useful in defining other
transformers.

A pattern alphabet is a finite subset of the event alphabet. A pattern is a
finite string over the pattern alphabet. Let P be a finite set of patterns. Trace
t is atomic with respect to P if the event sequence in t can be written uniquely
as a sequence of patterns from P interspersed with events outside the pattern
alphabet, optionally followed by a prefix of some pattern if t is finite. Predicate
atom(P, t), where P is a finite set of patterns and t a trace, holds iff t is atomic
with respect to P .

It is easy to see that atom is a filter predicate, because W [] is accepted and if
t is accepted then so are all its prefixes. Additionally, atom defines a continuous
filter because if an infinite trace t is rejected then some finite prefix of it is not
atomic with respect to P .

Unfair Merge One of the most important transformers, that models concur-
rent executions of components, is merge. It interleaves the events of two traces
arbitrarily yielding a traceset from a pair of traces. Besides interleaving the
events, merge also computes the status of the interleaved trace based on those of
the given traces. Assume that the events in the traces to be merged are distinct.

There are two forms of interleavings, unfair and fair, of event sequences m

and n. The distinction is significant only when one or both of m and n are
infinite. If each interleaving includes all elements of m and n then it is fair ; we
treat fair merge in Section 3.3. An unfair interleaving may include only a finite
prefix of n for infinite m, and analogously for infinite n.

Properties of unfair interleaving Define unfair interleaving of m and n, m ⊗ n,
by the following program (using pattern matching style):

[] ⊗ n = n

m ⊗ [] = m

(a : m) ⊗ (b : n) = (a : (m ⊗ (b : n))) ∪ (b : ((a : m) ⊗ n))

A Denotational Semantic Theory of Concurrent Systems 13

Using fixed point induction it can be shown that ⊗ is symmetric. It can
also be shown that it is monotonic in both arguments, so m ⊗ n ⊆ m′ ⊗ n and
m ⊗ n ⊆ m ⊗ n′, where m ⊆ m′ and n ⊆ n′. Further,

(m ⊗ n)∗ = m∗ ⊗ n∗ (⊗ distributes over prefixes)

Transformer for unfair merge Unfair merge of two traces applies unfair inter-
leaving to their event sequences. Also, it applies a symmetric binary operation
∩ over their status values: H ∩ y = y and W ∩ W = W . Define unfair merge
transformer, | , as follows, where both y and z are from {H, W}.

y[m] | z[n] = (y ∩ z)(m ⊗ n)
D[m] | z[n] = D[m ⊗ n∗]
D[m] | D[n] = D[m ⊗ n∗] ∪ D[m∗ ⊗ n]

Observe that m and n may be finite or infinite in D[m] and D[n] above. Note
that z[n] | D[m] = D[m] | z[n], and it is not shown explicitly below.

The intuition behind this definition is as follows. Expression y[m] | z[n] de-
notes the concurrent execution of two executions, one corresponding to y[m] and
the other to z[n]. Both executions are finite and if either fails to halt then the
concurrent execution does not halt either, as given by the status (y ∩ z). The
event sequence in y[m] | z[n] is an interleaving of m and n, which justifies the
result expression (y ∩ z)(m ⊗ n).

Next, consider infinite executions defined by the next two cases. In D[m] | z[n],
D[m] denotes an infinite execution D[m′] where m is the sequence of visible
events in m′; thus, m may be finite. The resulting concurrent execution is infi-
nite, so its status is D. Any concurrent execution executes a prefix of z[n] with all
of D[m′]; so the event sequences in all such executions are given by m′⊗n. Since
only the events of m are retained from m′, the resulting expression is D[m⊗n∗].
Similar remarks apply for D[m] | D[n], because any execution may use a prefix
of the event sequence of one of D[m] or D[n] and all events of the other.

It can be shown from the above definition that unfair merge is commuta-
tive, associative and H [] is its zero. We show that unfair merge is smooth in
Proposition 8.

Fair Merge Fair merge is based on fair interleaving, which we denote by ⊗′:

m ⊗′ n = {x x ∈ m ⊗ n, x contains m and n as subsequences}

Note that if m is infinite and n non-empty, then m ∈ m ⊗ n and m 6∈ m ⊗′ n.
Extend the definition of ∩ to apply to all status values {H, W, D} as follows.

Recall that ∩ is symmetric. For any status value y

H ∩ y = y, W ∩ W = W and D ∩ y = D

Define fair merge transformer, |′ , of two argument traces y[m] and z[n] for
y and z from {H, W, D}, and finite or infinite m and n.

14 Jayadev Misra

y[m] |′ z[n] = (y ∩ z)(m ⊗′ n)

The proof of smoothness of fair merge can be developed in a manner similar
to unfair merge. There is a much simpler alternative proof. Observe that fair
merge of y[m] and z[n] is same as their unfair merge followed by application of
a filter that removes every infinite trace D[k] from y[m] | z[n] where k 6∈ m⊗′ n.
Both unfair merge and filter are smooth; so, their composition, fair merge, is
also smooth.

Replace We consider a general version of substitution of a sequence of events by
a single event. A source alphabet and a target alphabet are disjoint finite subsets
of the event alphabet. A replacement pair is of the form (σ, τ) where σ, called
the source, is a finite string over the source alphabet, and τ , called the target, is
a single symbol from the target alphabet.

Let R be a finite set of replacement pairs. A source may occur multiple times
in R with different targets, and similarly, a target may have multiple occur-
rences in R with different sources. Transformer replace substitutes occurrences
of a source by all corresponding targets in an event sequence. The effect of
replace(R, t) is to (1) accept t if t is atomic with respect to the sources, see
Section 3.3 and t contain no symbol from the target alphabet, and (2) if t is
accepted, replace occurrence of every source by all corresponding targets to ob-
tain a set of traces, and (3) then replace occurrence of any proper prefix of a
source by the empty string. The situation in (3) arises because the prefix of an
atomic trace may contain a prefix of a source as its suffix. The domain of this
transformer can be extended to all traces using domain extension described in
Section 3.2.

Henceforth, let f(t) denote replace(R, t) for a specific R. The definition of
f for finite t is given in clausal form in a functional style, where the clauses are
attempted in the given order from top to bottom.

f(y[σ′]) = y[], where σ′ is a proper prefix of a source
f(y[σm]) = ∪{cons(τ, f(y[m])) (σ, τ) ∈ R}
f(y[am]) = cons(a, f(y[m])), a 6∈ source alphabet

Thus the source σ is replaced by every target associated with it in f(y[σm]).
For infinite t, it is easier to specify the transformer using limits from Sec-

tion 2.4. Such a definition permits simpler proofs of smoothness and bismooth-
ness: f(t) = lim(f(t∗′)).

We prove that replace is smooth in Proposition 9. It can be shown that the
“substitution” transformer, that replaces each event e in a trace by event h(e)
where h is a function over the event alphabet, is smooth.

Rendezvous The unfair and fair merge transformers of Section 3.3 and Sec-
tion 3.3 implement independent concurrent processes whose executions can be
arbitrarily interleaved. We consider more refined versions of concurrent execu-
tions in Section 3.5 in which the processes call upon shared resources, and hence,

A Denotational Semantic Theory of Concurrent Systems 15

their executions can not be arbitrarily interleaved. Here, we introduce a form of
synchronization, called rendezvous in CSP [6] and CCS [11], that ensures that
a pair of complementary events {e, e} from the two processes occur simultane-
ously. Their simultaneous occurrence is shown by an event τ in the combined
trace that belongs to neither process.

We define rendezvous by composing the transformers atom and replace.
First, perform an appropriate merge, fair or unfair, of the specs of the two
processes. Then apply transformer atom of Section 3.3 to eliminate the traces
in which {e, e} do not occur contiguously. Next, using transformer replace of
Section 3.3, replace all (contiguous) occurrences of {e, e} by τ , and remove any
e or e event that occurs by itself. We generalize this scheme slightly by allowing
rendezvous to occur with any finite set of events E instead of just two events
{e, e}, as follows.

Let E′ be the set of strings obtained by permuting the events of E in all
possible order. Henceforth, write rendezvous(E, τ, t), τ 6∈ E, for the transformer
that (1) accepts t provided t is atomic with respect to E′, (2) replaces every
pattern of E′ in trace t by event τ , and then (3) removes any non-empty proper
prefix of a pattern of E′. Here, t would likely be a trace arising out of the
concurrent executions of processes. If required, τ can be eliminated by applying
transformer drop of Section 3.3. Define rendezvous as follows and note that it
is smooth since atom and replace are smooth.

rendezvous(E, τ, t) = replace({(σ, τ) σ ∈ E′}, atom(E′, t))

A flaw in this definition, as noted by a referee, is that contiguous events of a
single component may perform rendezvous, because there is no distinction among
events from different components. To overcome this flaw distinguish events from
different components so that every pattern in E′ consists of events from different
components.

Sequential Composition Consider a simple form of sequential composition
of f and g in which g starts executing only when f halts. The corresponding
transformer ; is:

H [m] ; z[n] = z[mn],
s ; z[n] = s, otherwise

It can be shown that sequential composition is associative. We show that
sequential composition is smooth in Proposition 10.

3.4 Fairness

Fairness is a filter that eliminates only certain infinite traces from a spec. For
example, a fairness constraint for the coin toss example of Section 2.1 may specify
that the coin is fair so that an infinite sequence of tails is impossible; then,
trace D[tlω] is inadmissible. A fairness constraint about a strong semaphore

16 Jayadev Misra

may specify that any execution in which a P event on the semaphore remains
waiting forever while V events happen infinitely often is inadmissible. In a real-
time computation a fairness constraint may specify that an infinite number of
events may not occur within a bounded time interval.

A fairness constraint can be defined by a filter predicate b, where b holds for
all finite traces and, possibly, some infinite traces. Therefore, b(W []) holds and
if b holds for any trace it holds for all its prefixes. For the coin toss example,
the filter predicate b holds for every finite trace and every infinite trace that
does not have an infinite suffix of either heads or tails (for the example shown,
it does not matter if the coin lands heads infinitely often, because the game is
terminated after the first landing of a head). Being a filter, fairness is a smooth
transformer. Fairness is not bismooth; see Section 4.3.

Fairness can be composed with other transformers. In particular, different
forms of fairness may apply to different parts of a program; a fair and an unfair
version of the coin toss program may run concurrently, for example, and our
theory would yield their combined spec.

3.5 Shared Resource

Merge transformers, Section 3.3 and Section 3.3, model independent concurrent
executions of processes by interleaving the traces of the individual processes.
Concurrent executions are rarely independent. For example, trace s of one pro-
cess includes the event read(3) that reads value 3 from a read/write shared store,
trace t of another process includes write(3) for the same store, and the store is
local to these two processes. Then write(3) precedes read(3) in the traces for
their concurrent execution; any trace in which the events occur in a different
order has to be rejected. Further, if t includes write(5) instead of write(3), no
trace for the concurrent execution can include read(3).

Shared resource is a filter Each resource instance is a filter over an alphabet
that denotes the available operations on the resource. Alphabets of different
instances of the same resource and of different resources are disjoint. Applied
to the merge of traces of individual processes, the filter rejects the traces that
violate the semantics of the shared store. For example, for a read/write store
that is local to a pair of concurrently executing processes, first the appropriate
merge of their traces is constructed, and then a filter applied to ensure that: (1)
a value is written to the store before any value is read, and (2) any value that is
read is equal to the value last written. Any trace that violates these constraints
is rejected. Independent resources are independent filters that may be applied
in arbitrary order on a trace.

Local vs. global resource Consider concurrently executing processes A and B that
include traces s and t in their specs, respectively. Suppose s includes read(3) and
t includes write(5), as the only events on a shared read/write store. As we have
seen earlier, if the store is local to A and B, no trace for the concurrent execution
of A and B can include read(3). However, if the store is global, so that other

A Denotational Semantic Theory of Concurrent Systems 17

processes may access it, another process may perform write(3). So, a trace for
the concurrent execution of A and B may include read(3) for a global store.

It follows from this discussion that each resource has two filters corresponding
to its local and global behaviors. Suppose processes A, B and C, whose specs are
p, q and r, respectively, have a local resource. Let fl be the local filter and fg the
global filter for the resource. Then the spec for the concurrent execution of A, B

and C (assuming unfair merge for their concurrent execution) is fl(fg(p | q) | r).
It is easy to see that the global filter for a read/write store accepts all traces,
because for any given trace there is a sequence of accesses to the store that
validates that trace.

It is possible to develop a more elaborate set of filters for a resource based
on access rights that allows different processes to perform different operations
on the resource.

Blocking operations on shared resource Both filters, local and global, for a read-
/write store are continuous. In fact, a resource for which all operations are non-
blocking induces continuous filters. (Note, however, that for processes that share
a read/write store, their concurrent execution is modeled by the fair merge of
their specs. A fair merge introduces discontinuity; see Proposition 31.

For a resource with blocking operations, the filter may be continuous or
discontinuous. Consider a semaphore that has operations P and V on it, where
P is blocking and V non-blocking. It is customary to consider P as consisting
of two events, a request event, which we denote by 〈P and a response event P 〉,
where P 〉 is always preceded by the corresponding 〈P , though a 〈P may never
be followed by a corresponding P 〉.

First, consider a weak semaphore that merely ensures that a request is
granted (response sent), whenever the semaphore is available, to some wait-
ing process (i.e., any that has an outstanding request for it), though any specific
waiting process may never be granted the semaphore. A weak semaphore filter,
both local and global, has to reject an infinite trace in which the semaphore is
continuously available in an infinite suffix, the suffix contains 〈P , but contains
no subsequent P 〉. The weak semaphore filter is continuous.

Next, consider a strong semaphore that ensures that each process that re-
quests the semaphore is eventually granted it, provided the semaphore is avail-
able infinitely often in an infinite execution. The specification of each process
identifies the request and response events by the process identity. The corre-
sponding filter rejects an infinite trace that contains an infinite number of oc-
currences of V , some occurrence of 〈P1 for a specific process numbered 1, but
no subsequent P1〉. This is a discontinuous filter.

4 Treatment of Recursion

The theory developed so far is adequate for programs that include no recursive
definition; now, we enhance the theory to treat recursive definitions. Guarded
recursion is usually easier to handle. We treat the general case of unguarded

18 Jayadev Misra

recursion, as in solving an equation of the form x = f(x) in spec x, for a given
transformer f . Thus, we will compute the spec of a definition such as

def loop() = loop()

where loop(), with no arguments, is defined recursively. As we will see, the spec of
this program will not be the bottom spec {W []} but {D[]}∗ denoting a divergent
computation. This is because we expect each recursive call to engage in an
internal event in making the call, so the call entails an infinite computation in
which the internal events are invisible.

4.1 Classical Treatment of Recursion

The least fixed-point theorem due to Kleene [8], and also in Scott [13], applies
for any continuous function f on a complete partial order (cpo).

Theorem 1 (Least Fixed-point Theorem)
Let f be a continuous function on a cpo whose bottom element is ⊥. The least
fixed-point of f , lfp(f), is lub{f i(⊥) i ≥ 0} where
f0(x) = x, f i+1(x) = f(f i(x)) and lub is the least upper bound of a chain. ✷

In applying this theorem in our context, the set of specs form a complete
lattice, hence a cpo. Any trace-wise transformer is continuous over specs because
given a chain of specs pi, 0 ≤ i, where the least upper bound is union:

f(∪{pi i ≥ 0}) = ∪{f(pi) i ≥ 0)}.

Corollary 1 The least fixed point of a smooth transformer is a spec.

Proof: It is easily shown by induction on i that for any i, i ≥ 0, f i(W []) is a
spec. The union of specs is a spec. So, lfp(f) is a spec, from Theorem 1.

Revisiting the Coin Toss Example As an example of the application of the
least fixed-point theorem consider the coin toss example of Section 2.1. Call the
toss program stutter. A step of stutter either halts the computation, or engages
in event tl and then calls stutter, the choice being non-deterministic and unfair
in that an infinite number of calls may be made to stutter.

There are two component computations, halt and the recursive call on stutter,
that are combined through non-deterministic choice. As we have shown in Sec-
tion 3.3, the transformer corresponding to choice is set union. The spec of halt
is {H []}∗. Let x stand for the spec of stutter. The recursive call preceded by
event tl is cons(tl, x); see Section 3.3 for a definition of cons. Thus, we have:

x = {H []}∗ ∪ cons(tl, x)

Observe that each of the transformers, ∪ and cons are smooth. So, their com-
position given above is smooth.

The steps in the application of the least fixed-point theorem successively
yield, {W []}, {W [], H [], W [tl]}, {W [], H [], W [tl], H [tl], W [tl2]}, · · · , and for any
i, {H [tlj] 0 ≤ j ≤ i}∗∪{W [tli+1]}. Then lfp(stutter), the lub of this sequence,
is {H [tli] 0 ≤ i}∗.

A Denotational Semantic Theory of Concurrent Systems 19

The Need for Upward-closure of Specs From lfp(stutter) we may deduce
that every execution of stutter is finite, though unbounded, in length. But this is
not what happens in reality. It is possible for an unfair coin to land tails forever,
so the trace D[tlω] ought to be included in the spec. And, {H [tli] 0 ≤ i}∗ is
actually the spec of stutter where a fair coin is used in the toss so that there is
no infinite computation.

The present difficulty arises because subset ordering over specs implies that
the lub of a chain of specs is simply their union. We overcome this difficulty by
introducing the notion of upward-closed specs that include the limits of countable
chains of traces in the spec. The lub of a chain of upward-closed specs is not
simply their union, but the upward-closure of their union. Thus, the lub of the
specs {H [tlj] 0 ≤ j ≤ i}∗ ∪ {W [tli+1]}, for all i, 0 ≤ i, is {H [tli] 0 ≤
i}∗ ∪ {D[tlω]}.

This discussion suggests that in solving x = f(x), the transformer f needs to
transform an upward-closed spec to an upward-closed spec. Not all smooth trans-
formers have this property. So, we introduce bismooth transformers, a subclass
of smooth transformers, that have this property. We develop the appropriate
concepts of upward-closure, and revisit the least fixed-point theorem.

4.2 Upward-Closure

Definitions The following definitions use chains and limits from Section 2.4.

Definition of upward-closure The upward-closure of spec p is:

p∗ = {lim(c) c a chain in p}.

It follows that c∗, the upward-closure of chain c, is c ∪ lim(c). In particular,
for finite c, c∗ = c. A spec is upward-closed if p∗ = p, i.e., if chain c is in p, then
so is lim(c).

Trace s in p is maximal if there is no t in p such that s < t. An arbitrary
spec may not have a maximal trace, for example the spec {W [ai] i ≥ 0}. But
p∗ always has a maximal trace. Limit of a spec is given by:

lim(p) = {s s a maximal trace in p∗}

Chain Continuity Transformer f is chain continuous if f(c∗) = f∗(c) for any
chain c (f∗(c) is (f(c))∗). Each of the following conditions imply chain continuity:
(1) f(lim(c)) = lim(f(c)), for any chain c, (2) f(t) = lim(f(t∗′)) for any infinite
trace t.

Properties of Upward-closure Proofs of the following properties are in
Propositions 11–19.

1. (Proposition 11) Upward-closure is algebraic closure, i.e, for specs p and q,

(a) (extensive) p ⊆ p∗.

20 Jayadev Misra

(b) (monotonic) p ⊆ q ⇒ p∗ ⊆ q∗.
(c) (idempotent) (p∗)∗ = p∗.

2. Alternate characterizations of upward-closure: For spec p,

(a) p∗ = p ∪ {lim(c) c an infinite chain in p}.
This is because the limit of every finite chain of p is in p.

(b) (Proposition 12) p∗ = p ∪ lim(p).
(c) (Proposition 13) p∗ = lim∗(p).

It follows that given spec p, p∗ is a spec because p∗ = lim∗(p), and
lim∗(p) is prefix-closed.

3. (Galois Adjoints) Finite prefix closure and upward-closure are Galois Ad-
joints, i.e., for traceset p and spec q: p∗′ ⊆ q ≡ p ⊆ q∗.
The following identities are then easily derived for specs p and q.

(a) p∗′ = (p∗)∗′

(b) (p∗′)∗ = p∗

(c) p∗′ ⊆ q∗′ ≡ p∗ ⊆ q∗

(d) p∗′ = q∗′ ≡ p∗ = q∗

4. (Distribution over union and intersection)
(a) (Union) (Proposition 14) Let F be a family of upward-closed specs and

P = ∪p∈F (p). Then P ∗ = ∪p∈F (p∗) iff every chain in P belongs to some
spec in F . For finite F , P ∗ = ∪p∈F (p∗).

(b) (Intersection) (Proposition 15) Let F be a family of specs and P =
∩p∈F (p). Then P ∗ = ∩p∈F (p∗).

(c) (Proposition 16) For any spec q, q∗ = ∪{c∗ c a chain in q}.
5. (upward-closure of tuples) For specs p and q, (p × q)∗ = p∗ × q∗.
6. (Proposition 17) Let f be a finitely smooth transformer, and f(t) = lim(f(t∗′))

for every infinite trace t. Then, f is smooth.
7. (Proposition 18) Let f be chain continuous. If a finite trace s is in f(t), for

some trace t, then s ∈ f(t∗′). Equivalently, f∗′(p) = f∗′(p∗) = f∗′(p∗′), for
any spec p.

8. (Proposition 19) For spec p and filter g, g(p∗) ⊆ g∗(p).

Note on Distribution over union The result in Item(4a) is of interest only if the
chain is infinite and F is infinite, because any finite chain in P belongs to some
spec in F , and for finite F the result holds unconditionally. To see that P ∗ =
∪p∈F (p∗) does not hold unconditionally for infinite families, let pi = W∗[a

i], for
every natural number i. Each pi is a spec, and p∗i = W∗[a

i]. Therefore, (∪i(p
∗

i)) =
{W [ai] 0 ≤ i}. But, (∪ipi)

∗ = {W [ai] 0 ≤ i}∗ = {W [ai] 0 ≤ i} ∪ D[aω].

4.3 Bismooth Transformer

A smooth transformer does not necessarily preserve upward-closure. To see this,
consider transformer f where f(t) = t∗′ , for all traces t. It is easy to see that
f is smooth. For an infinite chain of traces c, f(c) = c, so f∗(c) = c∗ whereas
f(c∗) = f(c ∪ {lim(c)) = f(c) ∪ f(lim(c)) = c.

Call a transformer bismooth if it preserves both upward and downward-
closures. That is, for bismooth f :

A Denotational Semantic Theory of Concurrent Systems 21

(smooth; preserves downward-closure) f(p∗) = f∗(p), for any traceset p, and
(preserves upward-closure) f(p∗) = f∗(p), for any spec p.

A finitely bismooth transformer is smooth and it preserves upward-closure
over finitary specs.

Example of a Bismooth Transformer Consider transformer or from Sec-
tion 3.3 where or maps a tuple of specs (p, q) to p ∪ q. We have shown in that
section that or is smooth. To prove that or is bismooth show that or∗(p, q) =
or((p, q)∗).

or((p, q)∗)
= {or((p, q)∗) = or(p∗ × q∗) from item (5); rewriting}

or{(x, y) x ∈ p∗, y ∈ q∗}
= {or{(x, y) x ∈ p∗, y ∈ q∗} = {x x ∈ p∗} ∪ {y y ∈ q∗}; set theory}

p∗ ∪ q∗

= {upward-closure distributes over finite union, item (4)}
(p ∪ q)∗

= {definition of or}
or∗(p, q)

Chain Continuity 6= Bismoothness From its definition every bismooth
transformer, even a finitely bismooth transformer, is chain continuous. In anal-
ogy with the definition of smooth transformers based on traces it may seem that
we can give a similar characterization of bismooth transformers based on chains,
namely, that every smooth and chain continuous transformer is bismooth. The
following counterexample is due to Ernie Cohen.

Consider transformer hide from Section 3.3 that was shown to be smooth.
Let hidea be its instance that removes every a event from a trace. It is not hard
to see that hidea(c∗) = hidea∗(c) for any chain c. Yet hidea is not bismooth, as
shown below.

Let spec p be {W [aibi] i ≥ 0}∗, where a and b are different symbols from
the event alphabet. Now hidea∗(p) 6= hidea(p∗):

p∗ = {W [aibi] i ≥ 0}∗ ∪ D[aω] hidea(p∗) = {W [bi] i ≥ 0}
hidea(p) = {W [bi] i ≥ 0} hidea∗(p) = {W [bi] i ≥ 0} ∪ D[bω]

Properties of Bismooth Transformers As the counterexample in the previ-
ous subsection shows, chain continuity is insufficient for bismoothness. Typically,
proving that a transformer is bismooth is considerably more difficult than prov-
ing that it is smooth. The properties given below simplify such proofs.

Properties of Bismooth Transformers

1. The identity transformer, id(p) = p, is bismooth. Easy to show.

22 Jayadev Misra

2. (Bismooth composition) (Proposition 20) Composition of bismooth trans-
formers is bismooth.

3. (Proposition 21) A transformer is bismooth if and only if it is finitely bis-
mooth.

4. (Propositions 22 and 23) Smooth transformer f is bismooth if and only if (1)
f is chain continuous, and (2) corresponding to any chain d in f(p), where
p is a spec, there is a chain c in p such that d ⊆ f(c).

5. (Sufficient condition for bismoothness) (Proposition 24) Define a transformer
to be co-finite if it maps only a finite number of finite traces to any finite
trace. A transformer that is smooth, co-finite and chain continuous is bis-
mooth.

Property (2), bismooth composition, permits definition of new bismooth
transformers using the existing ones. Property (3) simplifies many proofs re-
garding bismooth transformers by eliminating considerations of infinite traces
in a spec. Even though chain continuity by itself is insufficient to guarantee bis-
moothness, Property (4) shows that an additional condition on chains in p and
f(p) is both necessary and sufficient for bismoothness. Property (5), a sufficient
condition for bismoothness, is immensely helpful in proofs when a transformer
is defined without using any known bismooth transformer. Almost all proofs in
Section 4.3 about the elementary transformers use this sufficient condition. Its
proof uses a recent result, from Misra [12], on a variation of Kőnig’s infinity
lemma [7]. The co-finiteness condition in property (5) is not a necessary condi-
tion for bismoothness; for example if f(t) = {W []} for all t then f is bismooth
though not co-finite.

Bismoothness of Transformers from Section 3.3 We showed a number of
useful transformers in Section 3.3. All transformers of that section except hide

of Section 3.3, discontinuous filter of Section 3.3 and fair merge of Section 3.3
are bismooth; see Table 1.

4.4 Least Upward-Closed Fixed Point

An upward-closed fixed point of f is a spec that is both a fixed-point and upward-
closed. The following theorem shows that the least upward-closed fixed-point of
bismooth f , lufp(f), is lfp∗(f). Since lfp(f) is a spec so is lufp(f).

Theorem 2 [Least Upward-Closed Fixed Point Theorem] (Proposition 34)
For bismooth f , lufp(f) = lfp∗(f) ✷

Consider the coin toss example of Section 4.1 whose least fixed point is
{H [tli] 0 ≤ i}∗. The least upward-closed fixed point corresponding to this
fixed point is {H [tli] 0 ≤ i}∗ ∪ {D[tlω]}, which faithfully describes the finite
and infinite behaviors with an unfair coin.

A Denotational Semantic Theory of Concurrent Systems 23

Transformer Bismooth? Proof

status map Yes Proposition 25
choice Yes Section 4.3
hide No Section 4.3
drop Yes Proposition 26
cons Yes Proposition 27

discontinuous filter No Proposition 28
continuous filter Yes Proposition 29

restrict by inclusion Yes special case of continuous filter
restrict by exclusion Yes special case of continuous filter

restrict by precedence Yes special case of continuous filter
atom Yes special case of continuous filter

unfair merge Yes Proposition 30
fair merge No Proposition 31

replace Yes Proposition 32
rendezvous Yes composition of bismooth transformers

Sequential Composition Yes Proposition 33
Table 1. Summary of Bismoothness of Elementary Transformers

4.5 Min-Max Fixed Points of Smooth Transformers

A smooth transformer that includes some aspect of fairness, say, a discontinuous
filter, is not bismooth. We develop a theorem that gives a precise characterization
of the appropriate least fixed points of smooth transformers. A similar result for
a model of actors using event diagrams is given in Clinger’s thesis [4] (Chapter
4).

A smooth transformer is monotonic; hence, using the Knaster-Tarski the-
orem [14], it has a least fixed point. However, this fixed point may not be
upward-closed. Consider the coin toss example of Section 4.1 that uses a fair

coin so that an infinite run of tails is inadmissible. The recursive equation de-
scribing this component is x = fc({H []}∗ ∪ cons(tl, x))
where transformer fc implements a fair coin and, hence, is a discontinuous filter.
There is no upward-closed fixed point of this equation. The desired fixed-point
is {H [tli] 0 ≤ i}∗, but it is not upward-closed. So, instead of upward-closed
fixed point, we look for a least fixed-point that includes as many limit traces as

possible under the fairness constraint.

For any smooth transformer f define p to be a maximal fixed point of f if p

is the greatest fixed point of f in p∗; i.e., p includes as many traces as possible
from p∗. Observe that the greatest fixed point in any traceset q is the union of
all fixed points in q, because union of fixed points is a fixed point for any trace-
wise transformer. The least maximal fixed point of f , mmfp(f), also called the
min-max fixed point, is: (1) a maximal fixed point of f , and (2) the least among
all maximal fixed points of f . Theorem 3 shows that min-max fixed point exists
for any smooth transformer.

24 Jayadev Misra

The following equation E(X), for a given X and unknown r, is important in
the study of min-max fixed point:

r = X ∩ f(r). [E(X)]

Theorem 3 [Min-Max Fixed Point Theorem] Let f be a smooth transformer
and p = lfp(f). Then (1) mmfp(f) is the greatest fixed point of f in p∗. Further,
(2) if f(p∗) ⊆ p∗, mmfp(f) is the greatest solution of E(p∗). ✷

Proof of (1) is in Proposition 35 and of (2) in Proposition 36. This theorem
shows that the min-max fixed point can be “computed” by first computing a
least fixed point and then a greatest fixed point, but there is no need for nested
fixed point computations. The computation of the least fixed point of f is “semi-
constructive” for all smooth transformers using the least fixed point theorem.
Unfortunately, a smooth transformer is not necessarily continuous with respect
to the greatest lower bound. So, the greatest solution of E(p∗) can not be com-
puted in the same manner. The greatest fixed point of f in p∗, given f(p∗) ⊆ p∗,
is ∪{r r ⊆ f(r) ∧ r ⊆ p∗}, using a proof similar to that of the Knaster-Tarski
theorem [14].

The min-max fixed point theorem is a generalization of the least upward-
closed fixed point theorem 2. To see this, let f be bismooth. Given p = lfp(f),
f(p∗) = f∗(p) = p∗. So, p∗ is a fixed point, therefore, the greatest fixed point in
p∗. Hence, mmfp(f) = p∗, from the min-max fixed point theorem.

The condition f(p∗) ⊆ p∗ in (2) holds if f is chain continuous, see Proposi-
tion 37. We consider a class of “fair” transformers in the next section for which
the condition in (2) holds, and we give stronger characterizations of min-max
fixed points for such transformers.

4.6 Fixed Point under Fairness

A common form of a smooth transformer is g ◦ h where g is a filter, typically
modeling fairness, and h a bismooth transformer. It can then be shown that
f(p∗) ⊆ p∗ where p = lfp(f), so the following stronger version of Theorem 3
applies.

Theorem 4 [Min-Max Fixed Point Theorem under Fairness] (Proposition 38)
Let f = g ◦ h where g is a filter, h is bismooth and p = lfp(f). Then mmfp(f) is
the greatest solution of the equation E(p∗), as well as of E′(p∗), where E′(X) is
the equation r = g(X) ∩ h(r). ✷

A special case of this theorem often arises in practice: for any infinite trace t,
t ∈ h(t). This holds for the coin-toss example shown previously in this section.
In this case a simpler characterization exists for the min-max fixed point.

Theorem 5 (Proposition 39) Let f = g ◦ h where g is a filter, h is bismooth,
and for any infinite trace t, t ∈ h(t). Then mmfp(f) = g(lfp∗(f)). ✷

A Denotational Semantic Theory of Concurrent Systems 25

5 Concluding Remarks

This paper grew out of an effort to develop a proof theory for Orc [5, 15], a
concurrent programming language designed by the author and his collaborators.
The concepts developed during that work, such as smooth and bismooth trans-
formers, were found to be applicable for concurrent systems in general. We have
constructed the transformers for Orc constructs by combining some of the ele-
mentary transformers described here. We have also extended the theory to real
time systems.

We are currently developing a proof theory for concurrent systems, based on
the theory developed here. A spec is a predicate over traces. Each elementary
transformer corresponds to some operation on one or more predicates; for exam-
ple, choice is simply disjunction over predicates and a filter is a conjunction of
the filter predicate to eliminate unacceptable traces. Other transformers, such
as merge and rendezvous, and have no simple counterpart in predicate calculus
though they can be specified using quantification.

Related Work Applying denotational semantics to a concurrency calculus was
pioneered by Hoare and his collaborators for CSP [1]. In a series of papers, they
have developed a number of models culminating in a failure-divergence model [2].
They have defined all the relevant features of CSP, including rendezvous-based
synchronized communication as well as both internal and external non-determinism.
Fairness is not relevant for CSP.

The theory proposed in this paper is inherently asynchronous. Concurrent
execution is modeled via interleaving of actions. Yet, it is possible to simulate
rendezvous, as we show in Section 3.3. There is no special treatment for failure
in our theory because it can be included as part of the spec of a component.

The distinction between internal and external non-determinism is exemplified
by the expressions ab+ac and a(b+c), where a is an internal event of a component
X , b and c are events on which X synchronizes with another component Y , and
+ denotes non-deterministic choice. In ab+ac the choice is made internally by X

to synchronize on either the b (if it has chosen the ab alternative) or the c event
(with ac alternative). If X has chosen to synchronize on b and Y offers c, there is
a deadlock. This distinction is modeled in our theory by X executing an internal
decision event, say a coin toss, that decides between b and c in ab + ac. The
internal specification of X includes the decision event as a visible event though
it is invisible in the external spec. In a(b + c), the choice of the synchronizing
event is determined externally, by Y offering either b or c.

Broy and Nelson [3] includes a number of important results concerning the
existence and non-existence of fixed-points in the presence of fair choice. Their
paper develops the theory for the “dovetail” operator that combines fair choice
with angelic non-determinism, so that a terminating computation causes com-
peting non-terminating computations to be discarded and rolled-back.

Meseguer, in personal communication, has observed that the theory presented
here is an instance of more general constructions in ω−posets [16, 9, 10].

26 Jayadev Misra

Acknowledgments. I am truly grateful to José Meseguer whose thorough read-
ing of an earlier draft, and substantive technical comments, especially about con-
nections to category theory and ω-cpo are highly relevant. Tony Hoare has been
a constant source of encouragement and inspiration. I am grateful to Ernie Co-
hen who spent considerable amount of time helping me with several conceptual
issues. Manfred Broy had pointed out some deficiencies in this theory. Vladimir
Lifschitz has been a sounding board and adviser on many algebraic questions.
Members of IFIP WG 2.3, as always, have given many helpful suggestions. Per-
ceptive comments by two anonymous referees have improved the presentation.

References

1. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processes. J. ACM, 31(3):560–599, June 1984.

2. S. D. Brookes, A. W. Roscoe, and D. J. Walker. An operational semantics for CSP.
Technical report, Carnegie Mellon University.

3. Manfred Broy and Greg Nelson. Adding fair choice to Dijkstra’s calculus.
TOPLAS, 16(3):924–938, May 1994.

4. William D Clinger. Foundations of actor semantics. Technical report, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1981.

5. Jayadev Misra et. al. Orc language project. Web site. Browse at
http://orc.csres.utexas.edu.

6. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,
1984.

7. D. Kőnig. Theorie der Endlichen und Unendlichen Graphen: Kombinatorische

Topologie der Streckenkomplexe. Leipzig: Akad. Verlag, 1936.
8. S. C. Kleene. Introduction to Metamathematics. North-Holland, 1952.
9. J. Meseguer. Completions, Factorizations and Colimits for Omega-posets. Reports,

U. of California, Los Angeles. 1978.
10. J. Meseguer. Order completion monads. Algebra Universalis, 16(1):63–82, 1983.
11. R. Milner. Communication and Concurrency. International Series in Computer

Science, C.A.R. Hoare, series editor. Prentice-Hall, 1989.
12. Jayadev Misra. Mapping among the nodes of infinite trees: A variation of Kőnig’s

infinity lemma. Information Processing Letters, 15(5):548–549, May 2015. DOI:
10.1016/j.ipl.2015.01.005.

13. D. Scott. Outline of a mathematical theory of computation. In 4th Annual Prince-

ton Conference on Inform. Sc. and Systems, pages 169–176, 1970.
14. A. Tarski. A lattice-theoretical fixpoint theorem and its appli-

cation. Pacific Journal of Mathematics, 5:285–309, 1955. See
http://www.cs.utexas.edu/users/misra/Notes.dir/KnasterTarski.pdf
for a detailed proof.

15. I. Wehrman, D. Kitchin, W. Cook, and J. Misra. A timed semantics of Orc.
Theoretical Computer Science, 402(2-3):234–248, August 2008.

16. J. Wright, E. Wagner, and J. Thatcher. A uniform approach to inductive posets
and inductive closure. Theoretical Computer Science, 7:57 – 77, 1978.

A Denotational Semantic Theory of Concurrent Systems 27

A Appendix: Detailed Proofs

Proposition 1 A transformer f is smooth if and only if it preserves prefix-
closure over individual traces, i.e., f∗(t) = f(t∗) for every trace t.

Proof: It is easy to see that if the given transformer is smooth then f∗(t) = f(t∗)
for every trace t, by replacing p by {t}. In the other direction, given that f∗(t) =
f(t∗) for every trace t:

f∗(p)
= {definition of f over a traceset}

(∪{f(t) t ∈ p})∗
= {prefix-closure distributes over set union}

∪{f∗(t) t ∈ p}
= {Assumption: f(t∗) = f∗(t)}

∪{f(t∗) t ∈ p}
= {rewrite}

∪{∪{f(s) s ∈ t∗} t ∈ p}
= {definition of p∗}

∪{f(s) s ∈ p∗}
= {definition of f over a set}

f(p∗)

Proposition 2 A transformer is smooth if and only if it maps specs to specs.

Proof: A smooth transformer maps specs to specs, by definition. Next, we show
that any transformer f that maps specs to specs is smooth. We apply the in-
duction principle from Section 2.2 (page 5) for this proof. Assume that for any
trace t, s < t implies f(s∗) = f∗(s), then show that f(t∗) = f∗(t). The proof
consists of two parts by mutual inclusion.

Proof of f(t∗) ⊆ f∗(t):

f(t∗)
= {t∗ = {t} ∪ {s∗ s < t}}

f({t} ∪ {s∗ s < t}
= {f is trace-wise}

f(t) ∪ {f(s∗) s < t}
= {induction hypothesis}

f(t) ∪ {f∗(s) s < t}
⊆ {monotonicity of f : for s < t, f∗(s) ⊆ f∗(t)}

f(t) ∪ f∗(t)
= {f(t) ⊆ f∗(t)}

f∗(t)

Proof of f∗(t) ⊆ f(t∗):

28 Jayadev Misra

f∗(t)
⊆ {{t} ⊆ t∗ and f is trace-wise}

f∗(t∗)
= {t∗ is a spec and f maps specs to specs. So, f(t∗) is a spec.

Therefore, f∗(t∗) = f(t∗)}
f(t∗)

Proposition 3 Composition of smooth transformers is smooth.

Proof: Let f and g be smooth transformers and (f ◦ g) their composition. For
any traceset p we show that (f ◦ g)(p∗) = (f ◦ g)∗(p).

(f ◦ g)(p∗)
= {definition of composition}

f(g(p∗))
= {g is smooth. So, g(p∗) = g∗(p)}

f(g∗(p))
= {f is smooth; apply f to g∗(p)}

f∗(g(p))
= {f∗(g(p)) = (f(g(p)))∗ = ((f ◦ g)(p))∗ = (f ◦ g)∗(p)}

(f ◦ g)∗(p)

Proposition 4 Any statusmap transformer of Section 3.3 (page 9) is smooth.

Proof: Let f be a statusmap transformer and y[m] be any trace.

f∗(y[m])
= {f(y[m]) = {y′[m]}}

{y′[m]}∗
= {Closure expansion}

{y′[m]} ∪ W [m∗′]

And also,

f(y∗[m])
= {Closure expansion}

f({y[m]} ∪ W [m∗′])
= {f is trace-wise}

{f(y[m])} ∪ f(W [m∗′])
= {f(y[m]) = {y′[m]}, f(W [k]) = {W [k]}, for any k}

{y′[m]} ∪ W [m∗′]

Proposition 5 Transformer or of Section 3.3 (page 9) is smooth.

s∗ or t∗
= {trace-wise transformer on two arguments}

{u or v u ∈ s∗, v ∈ t∗}
= {definition of or}

A Denotational Semantic Theory of Concurrent Systems 29

∪{{u, v} u ∈ s∗, v ∈ t∗}
= {set theory}

s∗ ∪ t∗
= {prefix-closure distributes over traceset union}

({s, t})∗
= {s or t = {s, t}}

(s or t)∗

Proposition 6 Transformer hide of Section 3.3 (page 9) is smooth.

Proof: Let f(t) denote hide(E, t) for a specific E. The following fact is obvious:

x ≤ f(t) ≡ (∃s : s ≤ t : f(s) = x) (1)

x ∈ f∗(t)
≡ {definition of prefix-closure}

{x x ≤ f(t)}
≡ {from (1)}

(∃s : s ≤ t : f(s) = x)
≡ {definition of prefix-closure and f applied to a traceset}

x ∈ f(t∗)

Proposition 7 Transformer cons of Section 3.3 (page 10) is smooth.

Proof: Recall the definition of cons:

cons(a, W []) = {W [], W [a]}
cons(a, y[m]) = {y[am]}

Let f be an instance of cons for some event a. We prove f∗(y[m]) = f(y∗[m]).

f(y∗[m])
= {Closure expansion}

f({y[m]} ∪ W [m∗′])
= {f is trace-wise}

f(y[m]) ∪ f(W [m∗′])
= {definition of f . The term W [] below is from f(W [])}

{y[am]} ∪ {W []} ∪ W [am∗′]
= {rewriting}

{y[am]} ∪ W [(am)∗′]
= {Closure expansion}

y∗[am]
= {definition of f . Equality holds for m = [] as well.}

f∗(y[m])

Proposition 8 Unfair merge transformer of Section 3.3 (page 12) is smooth.

30 Jayadev Misra

Proof:

• (y[m])∗ | (z[n])∗ = (y[m] | z[n])∗, where y and z are from {H, W}:
Then m and n are both finite and, hence, m∗′ = m∗ and n∗′ = n∗.

(y[m])∗ | (z[n])∗
= {Closure expansion; replace m∗′ by m∗ and n∗′ by n∗.}

({y[m]} ∪ W [m∗]) | ({z[n]} ∪ W [n∗])
= { | is trace-wise, so distributes over set union}

{y[m] | z[n]} ∪ {y[m] | W [n∗]} ∪ {W [m∗] | z[n]} ∪ {W [m∗] | W [n∗]}
= {definition of | }

(y ∩ z)(m ⊗ n) ∪ W [m ⊗ n∗] ∪ W [m∗ ⊗ n] ∪ W [m∗ ⊗ n∗]
= {(m ⊗ n∗) ⊆ (m∗ ⊗ n∗), (m∗ ⊗ n) ⊆ (m∗ ⊗ n∗)}

(y ∩ z)(m ⊗ n) ∪ W [m∗ ⊗ n∗]
= {⊗ distributes over prefixes; see Section 3.3, page 13}

(y ∩ z)(m ⊗ n) ∪ W [(m ⊗ n)∗]
= {For finite m and n, (m ⊗ n)∗ = (m ⊗ n)∗′}

(y ∩ z)(m ⊗ n) ∪ W [(m ⊗ n)∗′]
= {Closure expansion}

((y ∩ z)(m ⊗ n))∗
= {definition of | }

(y[m] | z[n])∗

• (D[m])∗ | (z[n])∗ = (D[m] | z[n])∗, where z is from {H, W}:

Then n is finite and n∗′ = n∗.

(D[m])∗ | (z[n])∗
= {Closure expansion; replace n∗′ by n∗.}

({D[m]} ∪ W [m∗′]) | ({z[n]} ∪ W [n∗])
= { | is trace-wise, so distributes over set union}

{D[m] | z[n]} ∪ {D[m] | W [n∗]} ∪ {W [m∗′] | z[n]} ∪ {W [m∗′] | W [n∗]}
= {definition of | }

D(m ⊗ n∗) ∪ D[m ⊗ n∗] ∪ W [m∗′ ⊗ n] ∪ W [m∗′ ⊗ n∗]
= {m∗′ ⊗ n ⊆ m∗′ ⊗ n∗}

D[m ⊗ n∗] ∪ W [m∗′ ⊗ n∗]

And,

(D[m]) | z[n])∗
= {definition of | }

D∗[m ⊗ n∗]
= {Closure expansion}

D[m ⊗ n∗] ∪ W [(m ⊗ n∗)∗′]
= {(m ⊗ n∗)∗′ = (m∗′ ⊗ n∗′); replace n∗′ by n∗}

D[m ⊗ n∗] ∪ W [m∗′ ⊗ n∗]

A Denotational Semantic Theory of Concurrent Systems 31

• D∗[m] | D∗[n] = (D[m] | D[n])∗:

D∗[m] | D∗[n]
= {Closure expansion}

({D[m]} ∪ {W [m∗′]}) | ({D[n]} ∪ {W [n∗′]})
= { | is trace-wise, so distributes over set union}

{D[m] | D[n]} ∪ {D[m] | W [n∗′]} ∪ {W [m∗′] | D[n]} ∪ {W [m∗′] | W [n∗′]}
= {definition of | }

D[m ⊗ n∗] ∪ D[m∗ ⊗ n] ∪ D[m ⊗ n∗′] ∪ D[m∗′ ⊗ n] ∪ W [m∗′ ⊗ n∗′]
= {m ⊗ n∗′ ⊆ m ⊗ n∗, m∗′ ⊗ n ⊆ m∗ ⊗ n}

D[m ⊗ n∗] ∪ D[m∗ ⊗ n] ∪ W [m∗′ ⊗ n∗′]

And,

(D[m] | D[n])∗
= {definition of | }

(D[m ⊗ n∗] ∪ D[m∗ ⊗ n])∗
= {prefix-closure distributes over set union}

D∗[m ⊗ n∗] ∪ D∗[m∗ ⊗ n]
= {Closure expansion}

D[m ⊗ n∗] ∪ W [(m ⊗ n∗)∗′] ∪ D[m∗ ⊗ n] ∪ W [(m∗ ⊗ n)∗′]
= {(m ⊗ n∗)∗′ = m∗′ ⊗ n∗′ , (m∗ ⊗ n)∗′ = m∗′ ⊗ n∗′}

D[m ⊗ n∗] ∪ D[m∗ ⊗ n] ∪ W [m∗′ ⊗ n∗′]

Proposition 9 Transformer replace of Section 3.3 (page 14) is smooth.

Proof: Recall the definition of replace. The transformer is denoted by f , σ is a
generic source and τ the corresponding target. Symbol a is a generic event. The
definition is given in clausal form in a functional style, where the clauses are
attempted in the given order from top to bottom.

f(y[σ′]) = y[], where σ′ is a proper prefix of a source
f(y[σm]) = {cons(τ, f(y[m])) (σ, τ) ∈ R}
f(y[am]) = cons(a, f(y[m])), a 6∈ source alphabet

First, we show that f(t∗) = f∗(t) for any finite trace t. The proof uses
induction on the length of t. Since the trace is finite, we use general prefix
instead of finite prefix operator in the proofs. Consider the different possible
forms of t.

1. t = y[σ′]: f(t) = y[]

f(t∗) = f(y∗[σ
′]) = f{y[σ′], W [σ′

∗
]} = f(y[σ′]) ∪ f(W [σ′

∗
]) = {y[], W []}

f∗(t) = y∗[] = {y[], W []}

2. t = y[σm]: f(t) = {cons(τ, f(y[m])) (σ, τ) ∈ R}

t∗ = y∗[σm] = y[σm] ∪ W [(σm)∗] = y[σm] ∪ W [σ∗ − {σ}] ∪ W [σm∗]
f(t∗) = {cons(τ, f(y[m])) (σ, τ) ∈ R} ∪ {W []} ∪ {cons(τ, f(W [m∗])) (σ, τ) ∈ R}, or
f(t∗) = {W []} ∪ {cons(τ, f({y[m]} ∪ W [m∗])) (σ, τ) ∈ R}

32 Jayadev Misra

And,
f∗(t)

= {f(t) = {cons(τ, f(y[m])) (σ, τ) ∈ R}}
{cons(τ, f(y[m])) (σ, τ) ∈ R}∗

= {rewrite}
{W []} ∪ {cons(τ, f∗(y[m])) (σ, τ) ∈ R}

= {induction: f∗(y[m]) = f(y∗[m])}
{W []} ∪ {cons(τ, f(y∗[m])) (σ, τ) ∈ R}

= {closure expansion}
{W []} ∪ {cons(τ, f({y[m]} ∪ W [m∗])) (σ, τ) ∈ R}

3. t = y[am]: For a 6∈ source alphabet, replace τ by a in the proof above.

The smoothness result for infinite t follows from item (6) of section 4.2
(page 19).

Proposition 10 Sequential composition (transformer ;) of Section 3.3 (page 15)
is smooth.

(H [m] ; z[n])∗
= {definition of ; }

(z[mn])∗
= {Closure expansion}

{z[mn]} ∪ W [(mn)∗′]
= {(mn)∗′ = m∗ ∪ (mn∗′); note that m is finite}

{z[mn]} ∪ W [m∗ ∪ (mn∗′)]
= {distribute W over the two terms in its argument}

{z[mn]} ∪ W [m∗] ∪ W [mn∗′]

And,

H [m]∗ ; z[n]∗
= {Closure expansion; note that m is finite}

(H [m] ∪ W [m∗]) ; (z[n] ∪ W [n∗′])
= {apply ; trace-wise}

{H [m] ; z[n]} ∪ (H [m] ; W [n∗′]) ∪ (W [m∗] ; z[n]) ∪ (W [m∗] ; W [n∗′])
= {rewrite}

{z[mn]} ∪ W [mn∗′] ∪ W [m∗] ∪ W [m∗]
= {rewrite}

{z[mn]} ∪ W [m∗] ∪ W [mn∗′]

The remaining proof, that (s ; z[n])∗ = (s∗ ; z[n]∗), is straightforward.

Proposition 11
Upward-closure is algebraic closure, i.e, for specs p and q,

1. (extensive) p ⊆ p∗.
Proof: From the definition.

A Denotational Semantic Theory of Concurrent Systems 33

2. (monotonic) p ⊆ q ⇒ p∗ ⊆ q∗.
Proof: From the definition.

3. (idempotent) (p∗)∗ = p∗.
Proof: Apply definition of upward-closure noting that p and p∗ have the same
set of chains.

Proposition 12 For spec p, p∗ = p ∪ lim(p).

Proof: Every maximal trace of p∗ is in lim(p), by definition of lim(p), and every
non-maximal trace of p∗ is finite, and hence in p. Therefore, p∗ ⊆ p ∪ lim(p).
Conversely, p ⊆ p∗, from item (2a) (page 20), and lim(p) ⊆ p∗ by definition of
lim(p). So, p ∪ lim(p) ⊆ p∗.

Proposition 13 For any spec p, p∗ = lim∗(p).

Proof:

lim∗(p)
= {definition of lim(p)}

{s s a maximal trace in p∗}∗
= {prefix-closure distributes over set union}

∪{s∗ s a maximal trace in p∗}
= {every trace in a set is a prefix of some maximal trace in that set}

{t t a trace in p∗}
= {set theory}

p∗

Proposition 14 Let F be a family of upward-closed specs and P = ∪p∈F (p).
Then P ∗ = ∪p∈F (p∗) iff every chain in P belongs to some spec in F . For finite
F , P ∗ = ∪p∈F (p∗).

Proof: Suppose every chain in P belongs to some spec in F .

P ∗

= {definition of upward-closure}
{lim(c) c a chain in P}

= {every chain c in P belongs to some spec in F .
Conversely, every chain in any spec in F is a chain in P}
∪p∈F {lim(c) c a chain in p}

= {definition of upward-closure}
∪p∈F (p∗)

Conversely, suppose there is a chain c in P that does not belong to any
spec in F . Then lim(c) ∈ P ∗ whereas for any p, since c 6⊆ p, lim(c) 6∈ p∗. So,
P ∗ 6= ∪p∈F (p∗).

For a finite family of specs, every infinite chain in P has an infinite subset in
some p, using the pigeon-hole principle. Since p is a spec, if it includes an infinite
subset of a chain, it includes the entire chain. The result then follows from the
proof above.

34 Jayadev Misra

Proposition 15 Let F be a family of specs and P = ∩p∈F (p). Then P ∗ =
∩p∈F (p∗).

Proof: For any trace t

t ∈ P ∗

≡ {using {t} for p and P for q in item (3) (page 20)}
t∗′ ⊆ P

≡ {P = ∩p∈F (p)}
t∗′ ⊆ p, for every p in F

≡ {using {t} for p and p for q in item (3) (page 20)}
t ∈ p∗, for every p in F

≡ {set theory}
t ∈ ∩p∈F (p∗)

Proposition 16 For any spec q, q∗ = ∪{c∗ c a chain in q}.

The proof of follows from Proposition 14 (page 33), where the family consists
of all the chains of q; note that q = ∪{c c a chain in q}, so P = q.

Proposition 17 Let f be a finitely smooth transformer, and f(t) = lim(f(t∗′))
for every infinite trace t. Then, f is smooth.

Proof: We show that for any infinite trace t, f(t∗) = f∗(t).
Let c = t∗′ . Then, c∗ = c, and f(c∗) = f(c). Since f is smooth over finite

traces f(c∗) = f∗(c). Therefore, f(c) = f∗(c), or f(c) is a spec.

f(t∗)
= {t∗ = {t} ∪ c; f is trace-wise}

f(t) ∪ f(c)
= {Assumption: f(t) = lim(f(c))}

lim(f(c)) ∪ f(c)
= {using f(c) for p in item (2b) of section 4.2 (page 19)}

f∗(c)
= {f(c) is a spec; item (2c) of section 4.2 (page 19): f∗(c) = lim∗(f(c))}

lim∗(f(c))
= {Assumption: f(t) = lim(f(c))}

f∗(t)

Proposition 18 Let f be chain continuous. If a finite trace s is in f(t), for
some trace t, then s ∈ f(t∗′). Equivalently, f∗′(p) = f∗′(p∗) = f∗′(p∗′), for any
spec p.

Proof: Let c = t∗′ .

s ∈ f(t)
⇒ {c = t∗′ , so t ∈ c∗}

A Denotational Semantic Theory of Concurrent Systems 35

s ∈ f(c∗)
⇒ {f is chain continuous}

s ∈ f∗(c)
⇒ {s finite}

s ∈ f(c)
⇒ {c = t∗′}

s ∈ f(t∗′)

It follows that for any spec p, s ∈ f∗′(p) ⇒ s ∈ f∗′(p∗′); so, f∗′(p) ⊆ f∗′(p∗′).
Conversely, since p∗′ ⊆ p, f∗′(p∗′) ⊆ f∗′(p); so f∗′(p) = f∗′(p∗′). Now, substitute
p∗ for p in this identity to get f∗′(p∗) = f∗′((p∗)∗′). Since (p∗)∗′ = p∗′ , from
item (3a) (page 20), we get f∗′(p) = f∗′(p∗′) = f∗′(p∗).

Proposition 19 For spec p and filter g, g(p∗) ⊆ g∗(p).

Proof: Let b be the filter predicate associated with g.

x ∈ g(p∗)
⇒ {definition of filter}

x ∈ p∗ ∧ b(x)
⇒ {From item 3 (page 20), using {x} for p and p for q}

x∗′ ⊆ p ∧ b(x)
⇒ {From property [F2] of filter, Section 3.3 (page 10)}

x∗′ ⊆ p ∧ b(x∗′)
⇒ {definition of filter}

x∗′ ⊆ g(p)
⇒ {From item 3 (page 20), using {x} for p and g(p) for q}

x ∈ g∗(p)

Proposition 20 Composition of bismooth transformers is bismooth.

Proof: Let f and g be bismooth and p any spec. Then f and g are both smooth
and their composition is smooth. The proof that (f ◦ g)(p∗) = (f ◦ g)∗(p) is
analogous to the corresponding result for smooth transformers, replacing all
occurrences of downward-closure by upward-closure.

Proposition 21 A transformer is bismooth if and only if it is finitely bismooth.

Proof: Clearly a bismooth transformer is finitely bismooth. We prove the con-
verse, that if f is finitely bismooth then f(p∗) = f∗(p) for any spec p (that may
contain infinite traces). Let q be the set of finite traces in p, i.e.., q = p∗′ .

f∗(p)
= {using f(p) for p in item (3b) (page 20)}

(f∗′(p))∗

= {f is finitely bismooth, so chain continuous.
Using item (7) (page 20)}

36 Jayadev Misra

(f∗′(p∗′))∗

= {q = p∗′}
(f∗′(q))∗

= {using f(q) for p in item (3b) (page 20)}
f∗(q)

= {f is finitely bismooth}
f(q∗)

= {p∗′ = q∗′ . Using item (3d) (page 20), p∗ = q∗}
f(p∗)

Proposition 22 Suppose transformer f is (S0) smooth, (S1) chain continuous,
and (S2) corresponding to any chain d in f(p), where p is any spec, there is a
chain c in p such that d ⊆ f(c). Then f is bismooth.

f(p∗)
= {from item (4c) (page 20)}

f(∪{c∗ c a chain in p})
= {f is trace-wise}

∪{f(c∗) c a chain in p}
= {f is chain continuous}

∪{f∗(c) c a chain in p}
= {p = {c c a chain in p}. So, f(p) = ∪c(f(c)).

Condition (S2): every chain d in ∪c(f(c)) is in some f(c).
Use item (4a) (page 20)
}

(∪{f(c) c a chain in p})∗

= {f is trace-wise. So, f(p) = (∪{f(c) c a chain in p})}
f∗(p)

Proposition 23 Suppose transformer f is bismooth. Then f is (S0) smooth,
(S1) chain continuous, and (S2) corresponding to any chain d in f(p), where p

is any spec, there is a chain c in p such that d ⊆ f(c).

Proof: Both (S0) and (S1) hold from the definition of bismooth. Next, we show
(S2). Let p be any spec, d a chain in f(p) and t = lim(d). Since d ⊆ f(p),
t ∈ f∗(p) = f(p∗). Therefore, for some s in p∗, we have t ∈ f(s). We show that
s∗′ is the desired chain c.

t ∈ f(s)
⇒ {monotonicity of downward-closure}

t∗ ⊆ f∗(s)
⇒ {f is smooth}

t∗ ⊆ f(s∗)
⇒ {from t = lim(d), d ⊆ t∗}

d ⊆ f(s∗)
⇒ {s∗ = s∗′ ∪ {s}}

A Denotational Semantic Theory of Concurrent Systems 37

d ⊆ f(s∗′) ∪ f(s)
⇒ {for any x in d, if x ∈ f(s) then x ∈ f(s∗′), from item (7) (page 20)}

d ⊆ f(s∗′)

Proposition 24 Define a transformer to be co-finite if it maps only a finite
number of finite traces to any finite trace. A transformer that is smooth, co-finite
and chain continuous is bismooth.

Proof: We show that f satisfies the sufficient conditions for bismoothness given
in Proposition 22 (page 36) for any spec p. Conditions (S0) and (S1) are met by
the hypotheses of this proposition. We next prove (S2), that for every chain d in
f(p) there is a chain c in p such that d ⊆ f(c), using the following subproposition
from Misra [12].

Subproposition 1 Let S and T be two non-empty trees with a binary relation,
cover, from the nodes of S to the nodes of T . For node x in S and y in T , say
that x covers y and y is covered by x whenever (x, y) ∈ cover. Suppose:
(C1) each node of T is covered by a non-empty finite set of nodes of S, and
(C2) if x covers y then the ancestors of x (which includes x) together cover the
ancestors of y.
Then, every path of T is covered by some path of S. ✷

Next, we show that the conditions (C1) and (C2) are met. Let S and T be the
set of finite traces in specs p and f(p), respectively. Parent of any trace in either
tree is its immediate predecessor in the prefix order. Thus, x∗ is the ancestors
of trace x. And, the relation cover is {(x, y) x ∈ p, y ∈ f(x)}. Since f is chain
continuous, every finite trace in f(p) is mapped to by some finite trace in p, from
item (7) (page 20). Therefore, every node in T is covered by some node in S.
Further, from co-finiteness of f , every trace in f(p) is covered by a finite set of
traces of S, thus satisfying condition (C1) of the lemma. We show that condition
(C2), that if x covers y then ancestors of x cover the ancestors of y, is met:

x covers y

= {meaning of cover}
y ∈ f(x)

⇒ {prefix closure is monotonic}
y∗ ⊆ f∗(x)

= {f is smooth}
y∗ ⊆ f(x∗)

= {meaning of cover}
x∗ covers y∗

= {meaning of ancestor}
ancestors of x cover the ancestors of y

Proposition 25 A status map transformer is bismooth.

Proof: We show that any status map transformer, f , satisfies the conditions in
Proposition 24. Hence, it is bismooth.

38 Jayadev Misra

1. A status map transformer is smooth, from Proposition 4 (page 28).
2. Clearly, f is co-finite.
3. Chain continuity is seen easily for any finite chain. We show that for any

infinite trace t with associated chain c, f(t) = lim(f(c)). Trace t being
infinite is of the form D[m] where m is infinite; and, f(D[m]) = D[m]. Also,
f(c) is c because every element of the chain has status W . So, lim(f(c)) =
lim(c) = D[m].

Proposition 26 A drop transformer is bismooth.

Proof: First, we show that transformer drop′ that drops the first occurrence,
if any, of a specific event τ in every trace is bismooth. To drop a finite set of
events, compose the corresponding drop′ for each event individually. Since finite
compositions of bismooth transformers is bismooth, drop is bismooth. Similarly,
a transformer that drops the first n occurrences of events from a finite event set
is bismooth, by composing n successive drop.

Henceforth, use f(t) for drop′(τ, t); we show f is bismooth. We appeal to
Proposition 24 (page 37).

1. drop′ is a special case of hide and hide is smooth, from Proposition 6
(page 29).

2. To see that f is co-finite, consider any finite trace s. Then s ∈ f(t) if (1)
s has no τ event and t is the same as s with at most one τ event inserted
somewhere within its event sequence, or (2) s has a τ event and t is the same
as s with a τ event inserted somewhere within its event sequence preceding
the first τ event. In both cases, the number of possible traces t is finite.

3. Chain continuity is seen easily for any finite chain. We show that f(lim(c)) =
lim(f(c)) for any infinite chain c. Let t = lim(c).

Case 1) t does not include τ : Then none of the traces in c include τ . We have
f(t) = t, and lim(f(c)) = lim(c) = t.

Case 2) t = D[aτm] for some finite sequence a and infinite sequence m. Then
c = W [a∗] ∪ W [aτm∗′].

lim(f(c))
= {c = W [a∗] ∪ W [aτm∗′]}

lim(f(W [a∗] ∪ W [aτm∗′]))
= {f trace-wise}

lim(f(W [a∗]) ∪ f(W [aτm∗′]))
= {f(W [a∗]) = W [a∗], f(W [aτm∗′]) = W [am∗′]}

lim(W [a∗] ∪ W [am∗′])
= {definition of prefix-closure}

lim(W [(am)∗′])
= {definition of lim}

D[am]
= {t = D[aτm]}

f(t)

Proposition 27 A cons transformer is bismooth.

A Denotational Semantic Theory of Concurrent Systems 39

Proof: We show that a cons transformer, f , satisfies the conditions in Proposi-
tion 24. Hence, it is bismooth.

1. cons is smooth, from Proposition 7 (page 29).
2. Clearly, f is co-finite.
3. Chain continuity is seen easily for any finite chain. Let c be an infinite chain

in p and t = lim(c). Trace t, being infinite, is of the form D[m]. Every trace
in c is of the form W [n] where n ∈ m∗′ . So, f(c) = f{W [n] n ∈ m∗′} =
{W []} ∪ {W [an] n ∈ m∗′}. Now, f(D[m]) = D[am]. And, lim(f(c)) =
D[am].

Proposition 28 A discontinuous filter is not bismooth.

Proof: Consider a discontinuous filter f that accepts all finite traces and rejects
some infinite trace t. Let c be the chain corresponding to t. Then for the chain
c, f(c∗) = c whereas f∗(c) = c ∪ lim(c), violating the bismoothness condition
applied to spec c.

Proposition 29 A continuous filter is bismooth.

Proof: We appeal to Proposition 22 (page 36).

(S0) Every filter is smooth.
(S1) Chain continuity follows from the definition of continuous filter.
(S2) We show that for any spec p and chain d in f(p) there exists a chain c in p

such that d ⊆ f(c). For any filter f , f(p) ⊆ p. So, any chain d in f(p) is a
chain in p that fulfills the condition. Further, d = f(d).

Proposition 30 Unfair merge is bismooth.

Proof: We appeal to Proposition 24 (page 37). The definition of unfair merge
from Section 3.3 (page 12) is:

y[m] | z[n] = (y ∩ z)(m ⊗ n), where both y and z are from {H, W}
D[m] | z[n] = D[m ⊗ n∗], where z is from {H, W}
D[m] | D[n] = D[m ⊗ n∗] ∪ D[m∗ ⊗ n]

1. Unfair merge is smooth, from Proposition 8 (page 29).
2. It is clear that | is co-finite.
3. Chain continuity is seen easily for any finite chain. We show that for any

infinite trace t with associated chain c, f(t) = lim(f(c)). Chain c consists
of tuples from the Cartesian product of two specs. At least one of the com-
ponent subchains in c is infinite. So, t = lim(c) is of the form (D[m], W [n])
for infinite m or (D[m], D[n]) for infinite m and n. The remaining case,
(W [m], D[n]) for infinite n, is symmetric to (D[m], W [n]).

Case 1) t = (D[m], W [n]), where m is infinite:

40 Jayadev Misra

f(t) = D[m] | W [n] = D[m ⊗ n∗]
c = (D[m], W [n])∗′ = {(W [k], W [k′]) k ∈ m∗′ , k′ ∈ n∗}
f(c) = {W [k ⊗ k′] k ∈ m∗′ , k′ ∈ n∗} = W [m∗′ ⊗ n∗]
lim(f(c)) = D[m ⊗ n∗]

Case 2) t = (D[m], D[n]), where m and n are infinite:

f(t) = D[m] | D[n] = D[m ⊗ n∗] ∪ D[m∗ ⊗ n]
c = (D[m], D[n])∗′ = {(W [k], W [k′]) k ∈ m∗′ , k′ ∈ n∗′}
f(c) = {W [k ⊗ k′] k ∈ m∗′ , k′ ∈ n∗′} = W [m∗′ ⊗ n∗′]
lim(f(c)) = D[m ⊗ n∗] ∪ D[m∗ ⊗ n]

Proposition 31 Fair merge is not bismooth.

Proof: Fair merge is a discontinuous filter applied to unfair merge. Since discon-
tinuous filter is not bismooth, fair merge is not bismooth either.

Proposition 32 replace is bismooth.

Proof: We appeal to Proposition 24 (page 37). Henceforth, let f(t) = replace(R, t).

1. replace is smooth, from Proposition 9 (page 31).
2. To see that f is co-finite, for any trace s, replace all target symbols by

the corresponding sources in all possible ways. Since the number of target
symbols is finite in a finite trace and the number of corresponding sources
is finite, only a finite number of traces map to s under f .

3. Chain continuity is seen easily.

Proposition 33 Sequential composition is bismooth.

Proof: We repeat the definition of sequential composition from Section 3.3 (page 15)

H [m] ; z[n] = z[mn],
s ; z[n] = s, otherwise

We appeal to Proposition 24 (page 37).

1. Sequential composition is smooth, from Proposition 10 (page 32).
2. Transformer ; is co-finite because for any finite trace z[m], z[m] = H [m′] ; z[n]

where m = m′n, or z[m] = W [m]. In either case, only a finite number of
traces map to z[n].

3. Chain continuity is seen easily for any finite chain. An infinite chain c for
this 2-arity transformer is a pair of chains (d, d′). There are three cases to
consider, and we show that for the corresponding transformer f in each case
f(lim(c)) = lim(f(c)), which implies chain continuity.

(a) d includes a trace of the form H [m]: Then lim(d) = H [m], and d′ is an
infinite chain with distinct elements. So, lim(d′) = D[n] for some n.

lim(c) = (H [m], D[n]), f(lim(c)) = H [m] ; D[n] = D[mn]
f(c) = W [(mn)∗′], lim(f(c)) = D[mn]

A Denotational Semantic Theory of Concurrent Systems 41

(b) d does not include a trace of the form H [m] and d is an infinite chain
with distinct elements: Let lim(d) = D[m], for some infinite m.

lim(c) = (D[m],−), f(lim(c)) = D[m]
f(c) = W [m∗′], lim(f(c)) = D[m]

(c) d does not include a trace of the form H [m] and d is a finite chain: Let
lim(d) = W [m], for some m. The proof is similar to that for the previous
case with W [m] in place of D[m].

Proposition 34 For bismooth f , lufp(f) = lfp∗(f).

Proof: Let p be an abbreviation for lfp(f). We have to show that (1) p∗ is a fixed
point of f , (2) p∗ is upward-closed, and (3) for any fixed point q of f that is
upward-closed, p∗ ⊆ q.

1. f(p∗) = p∗:
f(p∗)

= {f is bismooth}
f∗(p)

= {p is lfp(f); so f(p) = p}
p∗

2. p∗ is upward-closed: (p∗)∗ = p∗, from the idempotence of upward-closure.
3. p∗ ⊆ q:

p∗

⊆ {p = lfp(f) and q any fixed point of f , so p ⊆ q.
upward-closure is monotonic, so, p∗ ⊆ q∗}

q∗

= {q is upward-closed; so, q∗ = q}
q

Proposition 35 Let f be a smooth transformer and p = lfp(f). Then mmfp(f)
is the greatest fixed point of f in p∗.

Proof: Since f is smooth, p is a spec and p∗ is defined. Further, p∗ includes at
least one fixed point, namely p. Let q be the greatest fixed point of f in p∗; then
it is the union of all fixed points of f in p∗. We show that q is the min-max fixed
point.

First, q is a fixed point of f because union of fixed points is a fixed point.
Second, q is maximal because, q ⊆ p∗ ⇒ q∗ ⊆ p∗; since q is the greatest fixed
point of f in p∗, it is the greatest fixed point of f in q∗. Finally, q is the least
maximal fixed point because for any maximal fixed point s of f , q ⊆ s:

true

⇒ {p = lfp(f) and s is a fixed point of f}
p ⊆ s

⇒ {apply upward-closure to both sides}
p∗ ⊆ s∗

⇒ {q ⊆ p∗}

42 Jayadev Misra

q ⊆ s∗

⇒ {q is a fixed point of f in s∗; s is the greatest fixed point of f in s∗}
q ⊆ s

Proposition 36 Suppose f(p∗) ⊆ p∗. Then the greatest fixed point of f in p∗

is the greatest solution of E(p∗).

Proof: From Proposition 35 (page 41) the greatest fixed point of f in p∗ exists.
Recall that E(X) is the equation r = X ∩ f(r) in unknown r. We show

that, given f(X) ⊆ X , q is a fixed point of f in X iff it is a solution of E(X).
Therefore, the greatest fixed point of f in p∗ is the greatest solution of E(p∗).

q is a solution of E(X)
≡ {definition of E(X)}

q = X ∩ f(q)
≡ {q = X ∩ f(q) implies q ⊆ X}

q = X ∩ f(q) ∧ q ⊆ X

≡ {q ⊆ X ⇒ f(q) ⊆ f(X). From f(X) ⊆ X , f(q) ⊆ X}
q = f(q) ∧ q ⊆ X

≡ {simple deduction}
q is a fixed point of f in X

Proposition 37 Let p be a fixed point of a chain continuous transformer f .
Then f(p∗) ⊆ p∗.

Proof:

f(p∗)
= {item (4c) (page 20)}

f(∪{c∗ c a chain in p})
= {f is trace-wise. So, it distributes over union of tracesets}

∪{f(c∗) c a chain in p}
= {f is chain continuous: f(c∗) = f∗(c)}

∪{f∗(c) c a chain in p}
⊆ {(c ⊆ p) ⇒ (f(c) ⊆ f(p)) ⇒ (f∗(c) ⊆ f∗(p))}

∪{f∗(p) c a chain in p}
⊆ {Each term in the set is f∗(p). There is at least one term, W [].}

f∗(p)
= {p is a fixed point of f}

p∗

Proposition 38 Let f = g ◦h where g is a filter, h is bismooth and p = lfp(f).
Then mmfp(f) is the greatest solution of the equation (1) E(p∗), as well as of
(2) E′(p∗), where E′(X) is the equation r = g(X) ∩ h(r).

Proof: We first show that f(p∗) ⊆ p∗. Then (1) follows from the second part of
Theorem 3 (page 24).

A Denotational Semantic Theory of Concurrent Systems 43

f(p∗)
= {f = g ◦ h}

g(h(p∗))
= {h is bismooth}

g(h∗(p))
⊆ {From Proposition 19 (page 35), g(h∗(p)) ⊆ g∗(h(p))}

g∗(h(p))
= {g∗(h(p)) = (g(h(p)))∗ = f∗(p)}

f∗(p)
= {p is a fixed point of f}

p∗

To show (2), we prove that the rights sides of E(X) and E′(X) are identical.

X ∩ f(r)
= {using the definition of f}

X ∩ g(h(r))
= {from property of filter, Section 3.3 (page 10)}

g(X ∩ h(r))
= {from property of filter, Section 3.3 (page 10)}

g(X) ∩ h(r)

Proposition 39 Let f = g ◦ h where g is a filter, h is bismooth, and for any
infinite trace t, t ∈ h(t). Then mmfp(f) = g(p∗), where p = lfp(f).

Proof: First, we show g(p∗) ⊆ h(g(p∗)). Let i = p∗ − p; then i is a set of infinite
traces. Let n be the subset of i that g accepts, so g(i) = n.

Since p is a fixed point of f , g(h(p)) = p. Apply g to both sides and note that
g is idempotent, so g(h(p)) = g(p). Hence, g(p) = g(h(p)) = p. Further, since
g(h(p)) ⊆ h(p) and g(h(p)) = p, p ⊆ h(p).

g(p∗)
= {p∗ = p ∪ i, g(p) = p, g(i) = n}

p ∪ n

⊆ {for infinite t, t ∈ h(t). So, n ⊆ h(n)}
p ∪ h(n)

⊆ {p ⊆ h(p). So, p ∪ h(n) ⊆ h(p) ∪ h(n). h is trace-wise}
h(p ∪ n)

= {g(p∗) = p ∪ n, from the first line of this proof}
h(g(p∗))

As given by Theorem 4 (page 24), mmfp(f) is the greatest fixed point of the
equation r = g(p∗)∩h(r) in r. Any solution of this equation is a subset of g(p∗).
We show that g(p∗) is a solution, therefore mmfp(f) = g(p∗). Replace r by g(p∗)
in the right side of the equation to get

g(p∗) ∩ h(g(p∗))
= {g(p∗) ⊆ h(g(p∗)), from the above proof}

g(p∗)

44 Jayadev Misra

which is the left side of the equation.

