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Abstract

This note contains a proof of an ellipse-drawing program described in
McIlroy [2].

Background The problem treated in this note is to draw a given ellipse
on a discrete raster plane, as on a digital monitor that has pixels only
at grid points, or printed pages that can apply ink at specific points.
The ellipse is a continuous curve that only rarely passes through grid
points. So, only an approximation to the ellipse can be drawn. McIlroy [2]
proposes choosing those grid points that are near enough to certain points
on the ellipse. He establishes a number of properties of the chosen grid
points, and develops a sequence of efficient programs through refinement.

1 Mathematical properties of ellipse

Consider an ellipse with defining equation x2/a2+y2/b2 = 1, where both a
and b are positive integers. The equation is symmetric in x and y, so, many
properties regarding x-coordinate applies analogously to y-coordinate. We
restrict ourselves to drawing the ellipse in the first quadrant; symmetric
procedures apply to other quadrants.

In the first quadrant, the ellipse equation yields a function ecl from the
points in the closed interval [0, a] to the closed interval [0, b]. Specifically,
ecl(x) = b/a×

√
(a2 − x2). Note that ecl is 1-1 and continuous. Also ecl

is antimonotonic, so that for points p and q on the ellipse, p.x < q.x ≡
p.y > q.y, where p.x and q.y denote the x and y coordinates of p and q.

grid line A horizontal grid line is the set of points with a fixed integral
value of their y-coordinates. Similarly, a vertical grid line is the set of
points with a fixed integral value of their x-coordinates. We restrict the
values of the x-coordinates to the closed interval [0, a], and y-coordinates
to [0, b]. Thus the region of interest in the first quadrant is restricted to
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a rectangle R which is shown with bold borders in Figure 1, the dashed
lines are the horizontal and vertical grid lines. A horizontal grid line with
y = k is shown in the figure.

Figure 1: Rectangle R is within bold lines. Grid lines are dashed.

An interior point is a grid point within rectangle R that is not on any
of the boundary grid lines.

ipoint An intersection point, or ipoint, is the point of intersection of
the ellipse in the right quadrant with a grid line. The ipoint is vertical
if it intersects a vertical grid line, horizontal otherwise. Points (0, b) and
(a, 0) are both ipoints, and both horizontal and vertical.

Observation 1 There is a unique ipoint on every vertical and horizontal
grid line within rectangle R.

Proof: The proof uses the intermediate value theorem. To see this for
a horizontal grid line with y = k, where 0 ≤ k ≤ b, observe that the
ecl(0) = b and ecl(a) = 0. So, ecl attains the intermediate value k for
some x, 0 ≤ x ≤ a. The proof for vertical grid lines is analogous.

The uniqueness of the ipoint follows from the 1-1 property of the ellipse
function ecl. 2

It follows from this observation that the only ipoint on the horizontal
grid line y = 0 is (a, 0), and the vertical grid line x = 0 is (0, b).

2 Approximating ellipse intersections points

Freeman approximation [1] chooses grid point p to be lighted, written as
lighted(p), if it is within 1/2 unit of an ipoint p′ in both coordinates:

p.x− 1/2 ≤ p′.x < p.x+ 1/2, and p.y − 1/2 ≤ p′.y < p.y + 1/2 [L(p)]

Note that p′ is on a grid line, so either p.x = p′.x or p.y = p′.y . Call
ipoint p′ a witness to p. Observe that (0, b) and (a, 0) are lighted, and
they are both their own winesses.
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segment A horizontal grid line can be partitioned into unit length
segments called horizontal segment. Vertical segments are similarly de-
fined. Write pq for a segment whose end points are grid points p and
q: for a horizontal segment p.x = q.x − 1, p.y = q.y, and for a ver-
tical segment p.x = q.x, p.y = q.y + 1. Point r is on horizontal seg-
ment pq if p.x ≤ r.x < q.x, p.y = r.y and on vertical segment pq if
p.x = r.x, p.y > r.y ≥ q.y. That is, each segment is a half-open interval
of points that is open at the right end for a horizontal segment and the
top end for a vertical segment.

Henceforth, write ipt(pq) to denote that there is an ipoint on segment
pq.

Observation 2 An ipoint is a witness to one of the end points of its
segment. That is, ipt(pq) ⇒ (lighted(p) ∨ lighted(q)).

Proof: The ipoint on pq, assuming it is not exactly midway between p
and q, is closer than 1/2 unit to either p or q. Then it is a witness to the
closer end point. If it is exactly midway then, from L(q), it is witness to
q. 2

Observation 3 Consider the unit square pqrs whose upper left corner
is an interior point p; see Figure 2.

1. If there is an ipoint on segment pq, there is an ipoint on the segment
qr or sr. That is,

ipt(pq) ⇒ (ipt(sr) ∨ ipt(qr)).

2. If there is a witness for q on segment pq, then ipt(qr) ∨ lighted(r).

Figure 2: Unit grid pqrs whose upper left corner p is an interior point.

Proof: I prove the result for ipoint u on segment pq, as shown in
Figure 2.

1. From Observation 1

there is an ipoint v on the horizontal gridline that includes r
⇒ {antimonotonic property of the ellipse function ecl}

u.x < v.x
⇒ {rewrite: u.x < v.x < r.x ∨ r.x ≤ v.x}

v is on segment sr or r.x ≤ v.x
⇒ {definition of ipt}
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ipt(sr) ∨ r.x ≤ v.x
⇒ {Apply Intermediate value theorem when r.x ≤ v.x

u.x < q.x = r.x ≤ v.x and u.y = v.y + 1 implies
there is y′, u.y > y′ ≥ v.y such that ecl(r.x) = y′. So, ipt(qr).}
ipt(sr) ∨ ipt(qr)

2. If u is a witness for q, from the above argument ipt(qr) ∨ ipt(sr). I
show that ipt(sr) implies lighted(r). Any ipoint v on sr is closer to
r than u is to q because

r.x− v.x < {r.x = q.x, v.x > u.x} q.x− u.x ≤ 1/2.

So, v is a witness for r, and r is lighted. 2

There is a dual result corresponding to Observation 3 for ipoint on a
vertical grid line:

1. If there is an ipoint on segment ps, there is an ipoint on the segment
qr or sr. That is,

ipt(ps) ⇒ (ipt(qr) ∨ ipt(sr)).

2. If there is a witness for s on segment ps, then ipt(qr)∨ lighted(r).2

Given grid points p and q, q is to the: (1) south of p if q.x = p.x, q.y <
p.y, (2) east of p if q.x > p.x, q.y = p.y, (3) southeast of p if q.x >
p.x, q.y < p.y. Other directions, such as north, west, northeast, southwest
and northwest can be similarly defined.

Write E(p), S(p) and SE(p), respectively, for the points that are im-
mediately (i.e. are at unit distance) to the east, south, southeast of p.

Theorem 1 Given lighted(p), p ̸= (a, 0), at least one of E(p), SE(p)
and S(p) is lighted.

Proof: First, consider the case where p is an interior point. Assume
that the witness u to lighted(p) is on a horizontal grid line; the proof is
similar if the witness is on a vertical grid line. See Figure 3 for the unit
squares to the left and right of p. Here q, s and r are E(p), S(p) and
SE(p), respectively.

lighted(p)
⇒ {there is a witness for p on pq or q′p. From Observation 3,

witness on pq ⇒ ipt(pq) ⇒ (ipt(qr) ∨ ipt(sr))}
ipt(qr) ∨ ipt(sr)∨ (there is a witness for p on segment q′p)

⇒ {apply Observation 3 to witness on q′p}
ipt(qr) ∨ ipt(sr) ∨ ipt(ps) ∨ lighted(s)

⇒ {apply Observation 3 to the third term ipt(ps)}
ipt(qr) ∨ ipt(sr) ∨ ipt(sr) ∨ ipt(qr) ∨ lighted(s)

⇒ {apply Observation 1 and remove duplicate terms}
lighted(q) ∨ lighted(r) ∨ lighted(s)

Next, suppose p is not an interior point and p ̸= (a, 0). Then p is on
a grid line, x = a or y = 0. I prove that if p is on the vertical grid line
x = a, south(p) is lighted. The dual result for p on the horizontal grid
line y = 0 is similarly proved.
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p is on the grid line x = a and u is a witness for p
⇒ {(a, 0) is an ipoint on x = a and,

from Observation 1, (a, 0) is the only ipoint on x = a.
So, witness u is not on x = a}
u is on the horizontal segment q′p; see Figure 3

⇒ {q′ is an interior point; apply Observation 3}
ipt(ps) ∨ lighted(s)

⇒ {Only ipoint on x = a is (a, 0). So, ipt(ps) ⇒ (s = (a, 0))}
s = (a, 0) ∨ lighted(s)

⇒ {lighted(a, 0) and s = south(p)}
lighted(south(p)) 2

Figure 3: Lighted grid point p has a witness in its left or right segment.

3 An ellipse drawing program

The goal of the program is to compute the set of lighted points. It is
easily seen that all the lighted points are within rectangle R, as shown
in Figure 1. Therefore, it is sufficient to traverse R along horizontal or
vertical grid lines, and identify the lighted points. Based on Theorem 1
Mcilroy proposes a far more efficient program.

Lemma 1 Grid points p and q, where q is to the southwest of p, can not
both be lighted.

Proof: The constraint (SW), below, expresses that q is to the southwest
of p: q.x+ 1/2 ≤ p.x− 1/2, q.y + 1/2 ≤ p.y − 1/2 (SW)

Suppose both p and q are lighted. Let p′ and q′ be the corresponding
witnesses.

q′.x
< {from L(q)}

q.x+ 1/2
≤ {from (SW)}

p.x− 1/2
≤ {from L(p)}

p′.x
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Using the symmetry of x and y in L(p) and L(q), assert that q′.y < p′.y.
Since both p′ and q′ are on the ellipse, q′.x < p′.x implies q′.y > p′.y,
contradiction. 2

Lemma 1 implies that points p and q, where q is to the northeast of p,
can not both be lighted because p is to the southwest of q.

Lighted points in sub-rectangles within R Define R(p) to be
the set of grid points within R that are to the south and east of p, i.e.

q ∈ R(p) ≡ p.x ≤ q.x ≤ a, 0 ≤ q.y ≤ p.y

Note that R((0, b)) = R and R(p) is empty if p ̸∈ R. Write R.lits and
R(p).lits for the set of lighted points in R and R(p), respectively. The
goal of the program is to compute the set R.lits.

Observation 4 Given lighted(p),

1. lighted(E(p)) ⇒ R(p).lits = {p} ∪R(E(p)).lits

2. lighted(S(p)) ⇒ R(p).lits = {p} ∪R(S(p)).lits

3. (¬lighted(E(p))∧¬lighted(S(p))) ⇒ R(p).lits = {p} ∪R(SE(p)).lits

Proof: I prove only part(1); the other proofs are similar. The set of grid
points in R(p) is the union of the set of points in R(E(p)) and in the
vertical grid line from p to horizotal grid line y = 0. So,

R(p).lits
= {lighted(p)}

{p} ∪R(E(p)).lits ∪ {q | lighted(q), q.x = p.x, q.y < p.y}
= {Point q with q.x = p.x, q.y < p.y is to the southwest of E(p).

Given lighted(E(p)), from Lemma 1, the last set is empty.}
{p} ∪R(E(p)).lits 2

An abstract ellipse-drawing program The skeleton of a program
is given in Figure 4 that computes T , the set of lighted points. It has the
invariant:

I :: lighted(p) ∧ T ∪R(p).lits = R.lits

Proof of correctness Observation 4 provides justification for the
annotation in Figure 4. I show the proof of termination next.

The size of R(p) decreases in each iteration unless the loop exit condi-
tion p = (a, 0) holds. Since R(p) is a finite set, it can not decrease forever,
so, eventually p = (a, 0).

Here is another proof of termination. Consider the pair (a− p.x, p.y).
In each iteration either or both components of the pair decrease; therefore,
the pair decreases lexicographically. The minimum value of the pair in
lexicographic ordering is (0, 0). As long as the pair is different from (0, 0),
i.e. p ̸= (a, 0), the pair decreases. So, eventually p = (a, 0).
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Ellipse-drawing, Version 0
————————————————————————
{a > 0 ∧ b > 0}
T := ϕ ; p := (0, b)
{lighted(p), R(p) = R, T ∪R(p).lits = R.lits}
{I}
while p ̸= (a, 0) do

{p ̸= (a, 0), lighted(p), T ∪ {p} ∪R(p).lits = R.lits}
T := T ∪ {p};

{p ̸= (a, 0), lighted(p), p ∈ T, T ∪R(p).lits = R.lits}
if

[] lighted(E(p)) → p := E(p) {I}
[] lighted(S(p)) → p := S(p) {I}
[] ¬lighted(S(p)), ¬lighted(E(p)) → p := SE(p) {I}

endif

{I}
enddo ;
{p = (a, 0), T ∪R(p).lits = R.lits}
T := T ∪ {p}
{T = R.lits}

————————————————————————

Figure 4: Abstract version of ellipse drawing program, annotated
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