
Structured Orchestration of Data and Computation

William Cook
Jayadev Misra
David Kitchin

John Thywissen
Arthur Peters

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

The 10th International Symposium on Formal Aspects of
Component Software

Jiangxi Normal University, Nanchang, China.
October 28 - 30, 2013

1

A Big Vision:
Software Challenge in the next two decades

• Design Methodology
• Build it cheap
• Build it correct
• Build it for evolution

• Reliability
• Correctness
• Fault-tolerance in software and hardware

• Security

2

Orc

• Orc addressesDesign: as a component integration system.

Components:

• from many vendors
• for many platforms
• written in many languages
• may run concurrently and in real-time

• Preliminary work on Security.

3

Evolution of Orc

• Web-service Integration

• Component Integration

• Structured Concurrent Programming

4

Initial Goal: Internet Scripting

• Web Services as primitive operations

• Combinators to orchestrate them:
1. Sequential Orchestration
2. Parallel Orchestration
3. Interruption

5

Web-service Integration: Internet Scripting

• Contact two airlines simultaneously for price quotes.

• Buy a ticket if the quote is at most $300.

• Buy the cheapest ticket if both quotes are above $300.

• Buy a ticket if the other airline does not give a timely quote.

• Notify client if neither airline provides a timely quote.

-

6

Enhanced Goal: Component Integration

Components could be:

• Web services

• Library modules

• Custom Applications, including real time

Components could be for:

• Functional Transformation

• Data Object Creation

• Real-time Computation

7

Component Integration; contd.

• Combineanykind of component, not just web services

• Small components: add two numbers, print a file ...

• Large components: Linux, MSword, email server, file server ...

• Time-based components: for real-time computation

• Actuators, sensors, humans as components

• Fast and Slow components

• Short-lived and Long-lived components

• Written in any language for any platform

8

Concurrency

• Component integration: typically sequential using objects

• Concurrency is ubiquitous

• Magnitude higher in complexity than sequential programming

• No generally accepted method to tame complexity

• May affect security

9

Structured Concurrent Programming

• Structured Sequential Programming: Dijkstra circa 1968
Component Integration in a sequential world.

• Structured Concurrent Programming:
Component Integration in a concurrent world.

10

Orc: Structured Concurrent Programming

• A combinatorcombines two components to get a component

• Combinators may be applied recursively

• Results in hierarchical/modular program construction

• Combinators may orchestrate components concurrently

• Orc is just about 4 combinators

11

Power of Orc

• Solve all known synchronization, communication problems

• Code objects, active objects

• Solve all known forms of real-time and periodic computaions

• Solve a limited kind of transactions

• and, all combinations of the above

12

Typical Computing Domains

• Software Integration within an organization

• Workflow

• Mediated Computing

• Perpetual Computing

• Rapid Prototyping

13

OrcCalculus

• Site: Basic service or component.

• Concurrencycombinatorsfor integrating sites.

• Calculus includes nothing other than the combinators.

No notion of data type, thread, process, channel,
synchronization, parallelism· · ·

New concepts are programmed using new sites.

14

Examples of Sites

• + − ∗ && || = ...

• Println, Random, Prompt, Email ...

• Mutable Ref, Semaphore, Channel, ...

• Timer

• External Services:Google Search, MySpace, CNN, ...

• Any Java Class instance, Any Orc Program

• Factory sites; Sites that create sites: Semaphore, Channel ...

• Humans
...

15

Sites

• A site is called like a procedure with parameters.

• Site returns any number of values.

• The value ispublished.

16

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

17

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

18

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

19

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

20

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

21

Symmetric composition:f | g

• Evaluate f and g independently.

• Publish all values from both.

• No direct communication or interaction betweenf and g.
They can communicate only through sites.

Example: CNN(d) | BBC(d)

Callsboth CNN and BBC simultaneously.
Publishes values returned by both sites. (0, 1 or 2 values)

22

Sequential composition:f >x> g

For all values published byf do g.
Publish only the values fromg.

• CNN(d) >x> Email(address, x)

• Call CNN(d).
• Bind result (if any) tox.
• Call Email(address, x).
• Publish the value, if any, returned byEmail.

• (CNN(d) | BBC(d)) >x> Email(address, x)

• May call Email twice.
• Publishes up to two values fromEmail.

Notation: f ≫ g for f >x> g, if x is unused ing.

Right Associative: f >x> g >y> h is f >x> (g >y> h)

23

Schematic of Sequential composition

Figure:Schematic off >x> g

24

Pruning: f <x< g

For some value published byg do f .

• Evaluate f and g in parallel.

• Site calls that needx are suspended.
Consider(M() | N(x)) <x< g

• When g returns a (first) value:

• Bind the value tox.
• Kill g.
• Resume suspended calls.

• Values published byf are the values of(f <x< g).

Notation: f ≪ g for f <x< g, if x is unused inf .

Left Associative: f <x< g <y< h is (f <x< g) <y< h

25

Example of Pruning

Email(address, x) <x< (CNN(d) | BBC(d))

Binds x to the first value fromCNN(d) | BBC(d).
Sends at most one email.

26

Multiple Pruning happens concurrently

add(x, y) <x< f <y< g is (add(x, y) <x< f) <y< g

(add(x, y) <x< f) is computed concurrently withg

(add(x, y), f and g computed concurrently.

27

Otherwise: f ; g

Do f . If f haltswithout publishing then dog.

• An expression halts if
• its execution can take no more steps, and
• all called sites have either responded, or will never respond.

• A site call may respond with a value, indicate that it will never
respond (helpful), or do neither.

• All library sites in Orc are helpful.

28

Examples off ; g

1 ; 2 publishes1

(CNN(d) | BBC(d)) >x> Email(address, x) ; Retry()

If the sites are not helpful, this is equivalent to

(CNN(d) | BBC(d)) >x> Email(address, x)

29

Orc program

• Orc program has
• agoalexpression,
• a set of definitions.

• The goal expression is executed. Its execution

• callssites,
• publishesvalues.

30

Some Fundamental Sites

• Ift(b), Iff (b): booleanb,
Returns asignalif b is true/false; remainssilentotherwise.
Site is helpful: indicates when it will never respond.

• Rwait(t): integer t, t ≥ 0, returns a signalt time units later.

• stop : never responds. Same asIft(false) or Iff (true).

• signal : returns a signal immediately.
Same asIft(true) or Iff (false).

31

Use of Fundamental Sites

• Print all publications ofh. When h halts, publish "done".

h >x> Println(x) ≫ stop ; "done"

• Timeout:
Call site M.
Publish its response if it arrives within 10 time units.
Otherwise publish 0.

x <x< (M() | Rwait(10) ≫ 0)

32

Interrupt f

• Evaluation of f can not be directly interrupted.

• Introduce two sites:
• Interrupt.set: to interrupt f
• Interrupt.get: responds only afterInterrupt.set has been called.

• Interrupt.set is similar to release on a semaphore;
Interrupt.get is similar to acquire on a semaphore.

• Instead of f , evaluate

z <z< (f | Interrupt.get())

33

Site Definition

def MailOnce(a) =
Email(a, m) <m< (CNN(d) | BBC(d))

def MailLoop(a, t) =
MailOnce(a) ≫ Rwait(t) ≫ MailLoop(a, t)

def metronome() = signal | (Rwait(1) ≫ metronome())

• Expression is called like a procedure.
It may publish many values.MailLoop does not publish.

34

Example of a Definition: Metronome

Publish a signal every unit.

def Metronome() = signal
︸ ︷︷ ︸

S

| (Rwait(1) ≫ Metronome()
︸ ︷︷ ︸

R

)

S R

S R

35

Unending string of Random digits

Metronome() ≫ Random(10) – one every unit

def rand_seq(dd) = – at a specified rate
Random(10) | Rwait(dd) ≫ rand_seq(dd)

36

Concurrent Site call

• Sites are often called concurrently.

• Each call starts a new instance of site execution.

• If a site accesses shared data, concurrent invocations may
interfere.

Example: Publish each of "tick" and "tock" once per second,
"tock" after an initial half-second delay.

Metronome() ≫ ”tick”
| Rwait(500) ≫ Metronome() ≫ ”tock”

37

Orc Language vs. Orc Calculus

• Data Types: Number, Boolean, String, with Java operators

• Conditional Expression: if E then F else G

• Data structures: Tuple, List, Record

• Pattern Matching; Clausal Definition

• Closure

• Orc combinators everywhere

• Class for active objects

38

Subset Sum

Given integern and list of integersxs.

parsum(n, xs) publishes all sublists ofxs that sum ton.

parsum(5,[1,2,1,2]) = [1,2,2], [2,1,2]

parsum(5,[1,2,1]) is silent

def parsum(0, []) = []

def parsum(n, []) = stop

def parsum(n, x : xs) =
parsum(n − x, xs) >ys> x : ys

| parsum(n, xs)

39

Subset Sum (Contd.), Backtracking

Given integern and list of integersxs.

seqsum(n, xs) publishes thefirst sublist of xs that sums ton.

“First” is smallest by index lexicographically.
seqsum(5,[1,2,1,2]) = [1,2,2]

seqsum(5,[1,2,1]) is silent

def seqsum(0, []) = []

def seqsum(n, []) = stop

def seqsum(n, x : xs) =
x : seqsum(n − x, xs)

; seqsum(n, xs)

40

Subset Sum (Contd.), Concurrent Backtracking

Publish thefirst sublist of xs that sums ton.

Run the searches concurrently.

def parseqsum(0, []) = []

def parseqsum(n, []) = stop

def parseqsum(n, x : xs) =
(p ; q)

<p< x : parseqsum(n − x, xs)
<q< parseqsum(n, xs)

Note: Neither search in the last clause may succeed.

41

Process Networks

• A process network consists of: processes and channels.

• The processes run autonomously, and
communicate via the channels.

• A network is a process; thus hierarchical structure.
A network may be defined recursively.

• A channel may have intricate communication protocol.

• Network structure may be dynamic, by adding/deleting
processes/channels during its execution.

42

Channels

• For channelc, treat c.put and c.get as site calls.

• In our examples,c.get is blocking andc.put is non-blocking.

• We consider only FIFO channels.
Other kinds of channels can be programmed as sites.

43

Typical Iterative Process

Forever: Read x from channelc, compute withx, output result one:

def p(c, e) = c.get() >x> Compute(x) >y> e.put(y) ≫ p(c, e)

c e

p(c,e)

Compute

Figure:Iterative Process

44

Composing Processes into a Network

Process (network) to read from bothc and d and write one:

def net(c, d, e) = p(c, e) | p(d, e)

c

d

e

p(c,e)

p(d,e)

net(c,d,e)

Figure:Network of Iterative Processes

45

Workload Balancing
Read fromc, assign work randomly to one of the processes.

def bal(c, c′, d′) = c.get() >x> random(2) >t>
(if t = 0 then c′.put(x) else d′.put(x)) ≫

bal(c, c′, d′)

def workbal(c, e) = val c′ = Channel()
val d′ = Channel()
bal(c, c′, d′) | net(c′, d′, e)

c’

d’

e

p(c’,e)

c

p(d’,e)

 bal

workBal(c,e)

46

Packet Reassembly Using Sequence Numbers

Figure:Packet Reassembler

• Packet with sequence numberi is at position pi in the input
channel.

• Given: |i − pi| ≤ k, for some positive integerk.

• Then pi ≤ i + k ≤ pi+2×k. Let d = 2× k.

47

Packet Reassembly Program

def reassembly(read, write, d) = – d must be positive
val ch = Table(d, lambda(_) = Channel())

def input() = read() >(n, v)> ch(n%d).put(v) ≫ input()

def output(i) = ch(i).get() >v> write(v) ≫ output((i + 1)%d)

input() | output(0) – Goal expression

{- With Multiple Readers -} read() | read() | write(0)

48

Next Steps: Large Scale Deployment

• Industrial strength Implementation

• Distributed Implementation

• Partnering

49

