A proof of Fermat's little theorem

Jayadev Misra

September 5, 2021

The following theorem, known as Fermat's little theorem, is a fundamental result in number theory. The theorem has many applications. Pratt [3] uses the theorem to certify that a number is prime. It is used in cryptographic protocols, such as the Diffie-Hellman key exchange [1].

Theorem 1 For any natural number n and prime number $p, n^{p}-n$ is a multiple of p.

There are several ways to prove this theorem, e.g. using induction on n. A proof using the pigeon-hole principle is as follows. For positive integers i and j, and prime p it can be shown that $i . n \stackrel{\bmod p}{\equiv} j . n$ if and only if $i \stackrel{\bmod p}{\equiv} j$. Then $\{i . n \bmod p \mid 1<i<p\}=\{j \mid 1<j<p\}$. The product of the elements of the sets in this equation are identical, so, $\Pi(\{i . n \mid 1<i<p\}) \bmod p=\Pi(\{j \mid 1<$ $j<p\}) \bmod p$, or $n^{p-1} \times(p-1)!\stackrel{\bmod p}{\equiv}(p-1)$!. Since prime p does not divide $(p-1)$!, cancel $(p-1)$! from both sides to get $n^{p-1} \stackrel{\bmod p}{\equiv} 1$. This is equivalent to $n^{p} \stackrel{\bmod p}{\equiv} n$, or $n^{p}-n$ is a multiple of p.

Dijkstra[2] gives a beautiful proof using elementary graph theory. The proof given here is based on Dijkstra's constructions though it does not use graph theory.
Proof of the theorem: Consider the set of words of length p over an alphabet of size n. Define an equivalence relation over the words, x and y are equivalent if and only if x is a rotation of y. We count the number and size of the equivalence classes.

Define q to be a period for x if q rotations of x, leftward for positive q and rightward for negative q, yields x. Clearly, 0 is a period for all $x, 1$ is a period for x if and only if all symbols in x are identical, and given periods q and q^{\prime} for $x, a \times q+b \times q^{\prime}$, for arbitrary integers a and b, are also periods for x. In particular, a multiple of a period is a period. A simple period is not a multiple of another period. For simple period q for x, all q rotations of x yield distinct words.

Let q be a simple period for a given x. We use Bézout's identity: for integers m and n, there exist integers a and b such that $a \times m+b \times n=\operatorname{gcd}(m, n)$, where gcd is the greatest common divisor. Setting $m, n=p, q$ in Bézout's identity, $\operatorname{gcd}(p, q)$ is a period. Since p is prime, $\operatorname{gcd}(p, q)$ is either 1 or p, and since q is a
simple period, $q=1$ or $q=p$. If $q=1, x$ consists of identical symbols. There are n such words so, $q=p$ for the remaining $n^{p}-n$ words. Therefore, each of these words belongs to an equivalence class of size p; so, $n^{p}-n$ is a multiple of p.

Dijkstra's proof The following proof is a rewriting of the proof of Dijkstra [2]. For $n=0, n^{p}-n$ is 0 , hence a multiple of p. For positive integer n, take an alphabet of n symbols and construct a graph as follows: (1) each node of the graph is identified with a word of p symbols, and (2) there is an edge from x to y if rotating word x by one place to the left yields y. Observe:

1. No node is on two simple cycles because every node has a single successor and a single predecessor (which could be itself).
2. Each node is on a cycle of length p because successive p rotations of a word transforms it to itself.
3. Every simple cycle's length is a divisor of p, from (2). Since p is prime, the simple cycles are of length 1 or p.
4. A cycle of length 1 corresponds to a word of identical symbols. So, exactly n distinct nodes occur in cycles of length 1 . The remaining $n^{p}-n$ nodes occur in simple cycles of length p.
5. A simple cycle of length p, from the definition of a simple cycle, has p distinct nodes. From (4), $n^{p}-n$ is a multiple of p.

References

[1] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inform. Theory, 22(6):644-654, 1976.
[2] Edsger W. Dijkstra. A short proof of one of Fermat's theorems. EWD740: circulated privately, May 1980.
[3] Vaughan R Pratt. Every prime has a succinct certificate. SIAM Journal on Computing, 4(3):214-220, 1975.

