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The following theorem, known as Fermat’s little theorem, is a fundamental
result in number theory. The theorem has many applications. Pratt [3] uses the
theorem to certify that a number is prime. It is used in cryptographic protocols,
such as the Diffie-Hellman key exchange [1].

Theorem 1 For any natural number n and prime number p, np−n is a multiple
of p.

There are several ways to prove this theorem, e.g. using induction on n. A
proof using the pigeon-hole principle is as follows. For positive integers i and j,

and prime p it can be shown that i.n
mod p
≡ j.n if and only if i

mod p
≡ j. Then

{i.n mod p| 1 < i < p} = {j| 1 < j < p}. The product of the elements of the
sets in this equation are identical, so, Π({i.n| 1 < i < p}) mod p = Π({j| 1 <

j < p}) mod p, or np−1 × (p− 1)!
mod p
≡ (p− 1)!. Since prime p does not divide

(p− 1)!, cancel (p− 1)! from both sides to get np−1 mod p
≡ 1. This is equivalent

to np mod p
≡ n, or np − n is a multiple of p.

Dijkstra[2] gives a beautiful proof using elementary graph theory. The proof
given here is based on Dijkstra’s constructions though it does not use graph
theory.
Proof of the theorem: Consider the set of words of length p over an alphabet
of size n. Define an equivalence relation over the words, x and y are equivalent if
and only if x is a rotation of y. We count the number and size of the equivalence
classes.

Define q to be a period for x if q rotations of x, leftward for positive q and
rightward for negative q, yields x. Clearly, 0 is a period for all x, 1 is a period
for x if and only if all symbols in x are identical, and given periods q and q′

for x, a × q + b × q′, for arbitrary integers a and b, are also periods for x. In
particular, a multiple of a period is a period. A simple period is not a multiple
of another period. For simple period q for x, all q rotations of x yield distinct
words.

Let q be a simple period for a given x. We use Bézout’s identity: for integers
m and n, there exist integers a and b such that a×m+b×n = gcd(m,n), where
gcd is the greatest common divisor. Setting m,n = p, q in Bézout’s identity,
gcd(p, q) is a period. Since p is prime, gcd(p, q) is either 1 or p, and since q is a
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simple period, q = 1 or q = p. If q = 1, x consists of identical symbols. There
are n such words so, q = p for the remaining np − n words. Therefore, each of
these words belongs to an equivalence class of size p; so, np − n is a multiple of
p.

Dijkstra’s proof The following proof is a rewriting of the proof of Dijkstra [2].
For n = 0, np − n is 0, hence a multiple of p. For positive integer n, take an
alphabet of n symbols and construct a graph as follows: (1) each node of the
graph is identified with a word of p symbols, and (2) there is an edge from x to
y if rotating word x by one place to the left yields y. Observe:

1. No node is on two simple cycles because every node has a single successor
and a single predecessor (which could be itself).

2. Each node is on a cycle of length p because successive p rotations of a
word transforms it to itself.

3. Every simple cycle’s length is a divisor of p, from (2). Since p is prime,
the simple cycles are of length 1 or p.

4. A cycle of length 1 corresponds to a word of identical symbols. So, exactly
n distinct nodes occur in cycles of length 1. The remaining np − n nodes
occur in simple cycles of length p.

5. A simple cycle of length p, from the definition of a simple cycle, has p
distinct nodes. From (4), np − n is a multiple of p.
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