An elementary proof of Hall's marriage theorem

Jayadev Misra
Dept. of Computer Science
The University of Texas
Austin, Texas, 78712

April 1, 2022

1 Introduction

Hall's marriage theorem [1] is applied in many combinatorial problems. Given is a bipartite graph B with non-empty node sets X and Y. A matching is a set of edges that have no common incident nodes. A (X, Y) matching is a matching in which every node of X is incident on some edge in the matching.

Hall condition (HC): Subset S of X meets HC if the number of neighbors of S is greater than or equal to the size of S.

Theorem 1 [Hall] There is a (X, Y) matching if and only if every subset of X meets HC.

Proof: The proof in one direction, that if there is a (X, Y) matching every subset of X meets HC, is straightforward. I prove the converse of the statement by induction on the size of set X. If X is empty, there is a trivial matching. For the general case assume, using induction, that there is a matching over all nodes of X except one node r.

Henceforth $u \xrightarrow{n} v$ and $u \underline{m} v$ denote, respectively, that (u, v) is a non-matching edge and (u, v) a matching edge. An alternating path is a simple path of alternating matching and non-matching edges. Let Z be the subset of nodes of X that are connected to r by an alternating path.

Every node of Z except r is connected to a unique node in Z^{\prime} by a matching edge, from the induction hypothesis; so, there are $|Z|-1$ nodes in Z^{\prime} that are so connected. Since Z meets HC, $\left|Z^{\prime}\right| \geq|Z|$. Therefore, there is a node v in Z^{\prime} that is not connected to any node in Z by a matching edge. I show that v is not incident on any matching edge.

Let v be a neighbor of u in Z, so $u \xrightarrow{n} v$. Since $u \in Z$, there is an alternating path between r and u; extend the path to include edge $u \xrightarrow{n} v$, as shown below in P. I color the matching edges blue and non-matching edges red for emphasis. $P: r=x_{0} \xrightarrow[n]{n} y_{0} \underline{m} x_{1} \cdots x_{i} \xrightarrow{n} y_{i} \underline{m} x_{i+1} \cdots x_{t} \xrightarrow[n]{y_{t}} \stackrel{m}{-} x_{t+1}=u \xrightarrow[n]{v} v$.

If v is incident on a matching edge, say $v \underline{m} w$, then $w \notin Z$ because v is not connected to any node in Z by a matching edge. However, we can extend P as follows which shows that r is connected to w by alternating path, so $w \in Z$, a contradiction.

$$
P^{\prime}: r=x_{0} \underline{n} y_{0} \underline{m} x_{1} \cdots x_{i} \underline{n} y_{i} \underline{m} x_{i+1} \cdots x_{t} \underline{n} y_{t} \underline{m} x_{t+1}=u \underline{n} v \underline{m} w .
$$

So, we conclude that v is not incident on any matching edge.
Flip the edge labels in P from n to m and m to n to obtain a matching that includes all previously matched nodes of X and now includes r, so all nodes of X are in the matching.

This completes the inductive proof.

References

[1] Philip Hall. On representatives of subsets. J. London Math. Soc., 10(1):2630, 1935.

