
DEPARTMENT OF COMPUTER SCIENCES

Implementation of Orc

William Cook and Jayadev Misra

Department of Computer Science
University of Texas at Austin

Email: fcook,misrag@cs.utexas.edu
web: http://www.cs.utexas.edu/users/psp

UNIVERSITY OF TEXAS AT AUSTIN 0

DEPARTMENT OF COMPUTER SCIENCES

Status of Implementation

� Implementation coded in Java.� An Orc program can call Java programs as sites.� A Java program can call an Orc program.

Another implementation by Galen Menzel using Concurrent Haskell.

UNIVERSITY OF TEXAS AT AUSTIN 1

DEPARTMENT OF COMPUTER SCIENCES

Java Calling Orc

Include in the main (Java) programz:2 E(L)

wherez is a variable of the main program,E an Orc expression,L a list of actual parameters,
constants and variables of the main program.

The effect is: assign to z the first value published by E and terminate.

UNIVERSITY OF TEXAS AT AUSTIN 2

DEPARTMENT OF COMPUTER SCIENCES

Implementation Using the Semantic Rules

f l,! f 0f j g l,! f 0 j g (SYM1)

f y
,! f 0f >x> g �,! (f 0 >x> g) j [
=x℄g (SEQ1V)

The expression structure has to change.[[E(q) � f ℄℄2DE(p) �,! [p=q℄f (DEF)

Each expression has to be instantiated whenever it is called.

UNIVERSITY OF TEXAS AT AUSTIN 3

DEPARTMENT OF COMPUTER SCIENCES

A simpler strategy

� Compile a fixed structure for each expression.

– Compile each expression to a directed acyclic graph (dag).
– Each node of the dag has an instruction.� Runtime Dag Traversal: Place tokens at dag nodes.
In each step,

– Pick an appropriate token.
– Execute the corresponding instruction, which may� make site/expression call� create new tokens� publish a value

UNIVERSITY OF TEXAS AT AUSTIN 4

DEPARTMENT OF COMPUTER SCIENCES

Compiler

� For each defined expression and the goal expression build a dag.� Each dag has a root and a sink node.� Each node has an instruction:0 for expression 0� for silent transitionreturn to publish a valueM(L) site callE(L) expression callassign(x) assign to variable xwhere(x) for starting a where expression
hoke for ending a where expression

UNIVERSITY OF TEXAS AT AUSTIN 5

DEPARTMENT OF COMPUTER SCIENCES

Recursive Construction of Dag

0

assign(x)

f>x>g

τ τ τ
f g

τ

f | g

τ

f

g

f>>g

E

f g

where(x)

choke

τ

M

f

g

gf where x :ε

M E0

UNIVERSITY OF TEXAS AT AUSTIN 6

DEPARTMENT OF COMPUTER SCIENCES

Notes on Dag construction

� There is a unique root and sink for each dag.� The instruction at each sink is � .

UNIVERSITY OF TEXAS AT AUSTIN 7

DEPARTMENT OF COMPUTER SCIENCES

Dag Finalization

Change the instruction at each sink, from � to:
hoke , if this is the goal dag (i.e., for expression in the main program)return , for all other dags.

Hence,
a sink does not have a � instruction, i.e.,
Every � -node has a successor.

UNIVERSITY OF TEXAS AT AUSTIN 8

DEPARTMENT OF COMPUTER SCIENCES

Construction of Example Dag

τ

M N(x) τ

τ τ 0

τ

chokeτ

τ

assign(y)

G(y)

τ choke

where(x)

S

Figure 1: (M j N(x) where x:2 S � 0) >y> G(y)

UNIVERSITY OF TEXAS AT AUSTIN 9

DEPARTMENT OF COMPUTER SCIENCES

Dag Optimization (� -node Elimination)

Eliminate any non-root � -node:

τ

A B

C D

A B

C D

Restriction� A where node has a left and a right successor.� A site/expression call node has exactly one successor.

UNIVERSITY OF TEXAS AT AUSTIN 10

DEPARTMENT OF COMPUTER SCIENCES

Reconstruction of Example Dag

τ

M N(x)

0

choke

assign(y)

G(y)

where(x)

S

choke

Figure 2: (M j N(x) where x:2 S � 0) >y> G(y)

UNIVERSITY OF TEXAS AT AUSTIN 11

DEPARTMENT OF COMPUTER SCIENCES

Dag Traversal: (M j N) >x> (R j S(x))
τ

M N

R S(x)

choke

assign(x)

UNIVERSITY OF TEXAS AT AUSTIN 12

DEPARTMENT OF COMPUTER SCIENCES

τ

M N

R S(x)

choke

assign(x)

(1)

assign(x)

τ

M N

R

choke

S(x)
xxx

(4)

assign(x)

τ

M N

R

choke

S(x)

(5)

x x

assign(x)

τ

M N

R

choke

S(x)

(6)

x x

assign(x)

τ

M N

R

choke

S(x)

(2)

assign(x)

τ

M N

R

choke

S(x)

(3)

: ready token : suspended token

UNIVERSITY OF TEXAS AT AUSTIN 13

DEPARTMENT OF COMPUTER SCIENCES

Fields of a token

� position: the node in the dag.� context: values of variables (such as x in the example)� val: token’s value, which may be returned to the caller.� state: ready, pending, or suspended.

UNIVERSITY OF TEXAS AT AUSTIN 14

DEPARTMENT OF COMPUTER SCIENCES

Initialization

Given z := E(p; 3) in the Main program and goal dag E(x; y)� Create token t where t:
ontext = f(x; p’s value); (y; 3)g .� t:val = ? .� t:state = ready .� Put t on the root node of the goal dag.

UNIVERSITY OF TEXAS AT AUSTIN 15

DEPARTMENT OF COMPUTER SCIENCES

Process token t ’s instruction� 0 : skip.� � : put copies of t at all successor nodes.� Site call M(x) :
– call M with parameter value x from t:
ontext .
– put suspended copy of t at the successor node.� assign(x) :
– add (x; t:val) to t:
ontext .
– put copies of t at all successor nodes.�
hoke :
– return t:val to the caller. (This will be generalized.)
– Terminate this computation.

Delete t after processing.

UNIVERSITY OF TEXAS AT AUSTIN 16

DEPARTMENT OF COMPUTER SCIENCES

Processing expression call: caller’s dag

M

On receiving value

vv’
M

E(p)

Expression Call E(p)Initially

t

M
v

E(p) E(p)

� For ready token t at E(p) :

– put v , a pending copy of t , at M .
– Delete t .� On receiving value from E :
– create ready copy v0 of v to get the value.
– v remains pending, to receive more values.

UNIVERSITY OF TEXAS AT AUSTIN 17

DEPARTMENT OF COMPUTER SCIENCES

Processing expression call E(x): callee’s dag

� when token t at caller dag calls E(p) : put token u at E ’s root.

– u is ready .
– u:
ontext has (x; p’s value from t:
ontext) .
– u:
aller := v —
aller is a field of a token.� To process token t at the sink of the dag, with instruction return :

– v := t:
aller ;
– v:val := t:val ; v:state := ready
– delete t

UNIVERSITY OF TEXAS AT AUSTIN 18

DEPARTMENT OF COMPUTER SCIENCES

Example: Metronome
Signal Rtimer(1)

return

τ

Metronome

Figure 3: Metronome � Signal j Rtimer(1) �Metronome

UNIVERSITY OF TEXAS AT AUSTIN 19

DEPARTMENT OF COMPUTER SCIENCES

Signal Rtimer(1)

return

τ

Metronome

Signal Rtimer(1)

return

τ

Metronome

Signal Rtimer(1)

return

τ

Metronome

Signal Rtimer(1)

return

τ

Metronome

Signal Rtimer(1)

return

τ

Metronome

Signal Rtimer(1)

return

τ

Metronome

Signal Rtimer(1)

return

τ

Metronome

Signal Rtimer(1)

return

τ

Metronome

0’ 0’’

 0’’ 0’’

responds to Main0’

 0’’

0’’

 0’’

1

1’ 0’’

1’’ 1’’

 0’’ 0’’

returns to 1’ 0’’

i’: on the left, always ready

receives from Rtimer

: on the right, ready :on the right, suspendedi’’ i’’

0

0’

UNIVERSITY OF TEXAS AT AUSTIN 20

DEPARTMENT OF COMPUTER SCIENCES

Token structure in Metronome

� 00 and 000 return signals to Main.� i0 and i00 , i > 0 , return signals to (i� 1)00 .� i00 is permanently pending; copy i00 created when it receives a signal.

UNIVERSITY OF TEXAS AT AUSTIN 21

DEPARTMENT OF COMPUTER SCIENCES

Summary (so far)

� Compile dag for each expression.� A token has: position, context, val, caller, state.� Put a ready token with parameter values as context at the root of goal
dag.� Process any ready token, with instruction:0 , � , Site/Expr call, assign(x) , return ,
hoke

UNIVERSITY OF TEXAS AT AUSTIN 22

DEPARTMENT OF COMPUTER SCIENCES

where expression

f g

where(x)

choke

τ

Figure 4: f where x:2 g

� Compute f as far as possible. Call to M(x) may wait.� Compute g : At
hoke
– assign value to x .
– terminate g

UNIVERSITY OF TEXAS AT AUSTIN 23

DEPARTMENT OF COMPUTER SCIENCES

For ready token t at where(x)
f g

where(x)

choke

τ

u v

� Create ready tokens u and v at left and right successors.� Create cell
 where the value of x will be stored.
:val := ?� Add (x;
) to u:
ontext .
UNIVERSITY OF TEXAS AT AUSTIN 24

DEPARTMENT OF COMPUTER SCIENCES

Site/Expr call in the left subgraph

� For ready token t at site call M(x) where (x;
) is in t:
ontext :
if
:val 6= ? then call M(
:val) ; put copy u of t at successor.

– immediate site: receive response r ; u:val := r ; u:state := ready

– deferred site: u:state := suspended
if
:val = ? then t is pending waiting for
 .� For token t at expr call E(x) : proceed as before

delete t .
UNIVERSITY OF TEXAS AT AUSTIN 25

DEPARTMENT OF COMPUTER SCIENCES

For token t at where(x), contd.

f g

where(x)

choke

τ

u v

Given that cell
 is created at where(x) :� All tokens in g are killed at
hoke .� Identify all such tokens by cell
 ; kill all tokens of of cell
 .� v:
ell :=
 —
ell is a new field of a token.

UNIVERSITY OF TEXAS AT AUSTIN 26

DEPARTMENT OF COMPUTER SCIENCES

Processing
hoke
f g

where(x)

choke

τ

u v

For token t at
hoke :
 := t:
ell
:val := t:val
now no token waits for
 ;
any token waiting only for
 is made ready;
delete all tokens of cell

UNIVERSITY OF TEXAS AT AUSTIN 27

DEPARTMENT OF COMPUTER SCIENCES

Cell within cell: h where y:2 (f where x:2 g)
g

where(x)

choke1

where(y)

h

τ

τ

choke2

f

� Suppose y is assigned at
hoke2 before x is assigned.� Need to kill f where x:2 g ’s computation, i.e, both f and g .� Tokens in f and g have different cells.

UNIVERSITY OF TEXAS AT AUSTIN 28

DEPARTMENT OF COMPUTER SCIENCES

Cell Tree

f g

where(x)

choke

τ

u v

� In processing token t at where(x) :
create cell
 ;
:parent := t:
ell� In processing token s at
hoke :
kill all tokens of s:
ell and descendant cells.

UNIVERSITY OF TEXAS AT AUSTIN 29

DEPARTMENT OF COMPUTER SCIENCES

RootCell

� The initial token has cell RootCell .� The cells form a tree with root RootCell .

UNIVERSITY OF TEXAS AT AUSTIN 30

DEPARTMENT OF COMPUTER SCIENCES

Summary of Runtime structure

� Fields of a token: position, context, val, caller, state, cell.� Fields of a cell: val, parent, waitList.

UNIVERSITY OF TEXAS AT AUSTIN 31

DEPARTMENT OF COMPUTER SCIENCES

Overall algorithm

RootCell :val 6= ? ! return RootCell :val to main; terminate.t:ready ! process instruction at t ; delete tt:suspended ^ :(9s :: s:ready)! on receiving response r :t:val := r; t:state := ready
else ! “No value will be published”� Round-based Execution: Response from a deferred site is processed

only if there is no ready token.� else is same as (8t :: t:pending) . There may be no token at all (for0).� else is executed for M(x) where x:2 0� The algorithm may not terminate: there are suspended tokens, but no
deferred site responds.

UNIVERSITY OF TEXAS AT AUSTIN 32

