DEPARTMENT OF COMPUTER SCIENCES —\

Implementation of Orc

William Cook and Jayadev Misra

Department of Computer Science
University of Texas at Austin

Email: {cook, m sra}@s. ut exas. edu
web: htt p: //wwv. cs. ut exas. edu/ user s/ psp

N /

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Status of Implementation |

e Implementation coded in Java.

e An Orc program can call Java programs as sites.

e A Java program can call an Orc program.

Another implementation by Galen Menzel using Concurrent Haskell.

-)

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Java Calling Orc |

Include in the main (Java) program

z:€ E(L)
where

z IS a variable of the main program,
E an Orc expression,
L a list of actual parameters,
constants and variables of the main program.

The effect is: assign to z the first value published by FE and terminate.

N Y

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Implementation Using the Semantic Rules |

l /

/ CT / (Syml)
flg=f'lg

fe

S (SEQLV)
f >z g = (f >z>g)|[c/z]g

The expression structure has to change.

[E(q) A flleD (DEF)

E(p) <> [p/qlf

Each expression has to be instantiated whenever it is called.

-)

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ A simpler strategy |

e Compile a fixed structure for each expression.

— Compile each expression to a directed acyclic graph (dag).
— Each node of the dag has an instruction.

e Runtime Dag Traversal: Place tokens at dag nodes.
In each step,

— Pick an appropriate token.

— Execute the corresponding instruction, which may
*x make site/expression call
x Create new tokens
x publish a value

_ o

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Compiler |

e For each defined expression and the goal expression build a dag.
e Each dag has a root and a sink node.

e Each node has an instruction:

0 for expression 0
T for silent transition
return to publish a value
M(L) site call

E(L) expression call

assign(x) assign to variable x
where(z) for starting a where expression
choke for ending a where expression

- J

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Recursive Construction of Dag |

UNIVERSITY OF TEXAS AT AUSTIN

M

o
choke

flg
T

Qe

T

f wherex € ¢
where(x)

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Notes on Dag construction I

e There is a unique root and sink for each dag.

e The instruction at each sinkis .

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Dag Finalization |

Change the instruction at each sink, from 7 to:

choke, If this is the goal dag (i.e., for expression in the main program)
return, for all other dags.

Hence,
a sink does not have a 7 Instruction, I.e.,
Every 7-node has a successor.

N Y

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Construction of Example Dag I

where(x)

M N(x) 'l"

V)

/choke

assign(y)

0

G(y)

T choke

Figure 1: (M | N(z) where z:€ S > 0) >y> G(y)

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Dag Optimization (7-node Elimination) |
Eliminate any non-root 7-node:
A\ /B
(o
/ \ C
C D

O

Restriction

e A where node has a left and a right successor.

e A site/expression call node has exactly one successor.

. _

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Reconstruction of Example Dag |

where(x)

M N(x)

choke

/

assign(y)

v)

choke

Figure 2. (M | N(z) wherexz:€ S > 0) >y> G(y)

UNIVERSITY OF TEXAS AT AUSTIN

11

DEPARTMENT OF COMPUTER SCIENCES —\

Dag Traversal: (M | N) sz> (R | S(z))

- __/

10
M< S N

choke

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

: ready token O : suspended token
assign(x) O assign(x) O

N N
N ~o

choke choke
2 (€)
T
> <
assign(x) O /asswng O
Ehoke ® ® choke ®

13

-

‘ Fields of a token I

position: the node in the dag.
context: values of variables (such as z In the example)
val: token’s value, which may be returned to the caller.

state: ready, pending, or suspended.

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

14

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Initialization I

Given z:= FE(p,3) in the Main program and goal dag FE(x,y)

e Create token t where t.context = {(z,p’s value), (y,3)}.
o t.wal= 1.
e t.state = ready.

e Put ¢ on the root node of the goal dag.

N R/

UN|VERS|TY OF TEXAS AT AUST|N ___|] 15

‘Process token t’s instruction I

e 7. putcopies of t at all successor nodes.

e 0: skip.

e Site call M(x):

— call M with parameter value x from t.context.
— put suspended copy of ¢ at the successor node.

o assign(x):
— add (z,t.val) to t.context.
— put copies of ¢ at all successor nodes.

e choke:

— return t.val to the caller. (This will be generalized.)
— Terminate this computation.

Delete t after processing.

N

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

16

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Processing expression call: caller’s dag |

E(p) E(p) E(p)
Ot
Y, v’ Y,
M MO O MO
Initially Expression Call E(p) On receiving value

e Forready token ¢t at F(p):

— put v, a pending copy of ¢,at M.
— Delete t.
e Onreceiving value from FE':

— create ready copy v’ of v to get the value.
— o remains pending, to receive more values.

- __

UNIVERSITY OF TEXAS AT AUSTIN 17

DEPARTMENT OF COMPUTER SCIENCES ﬂ

Processing expression call E(x): callee’s dag

e when token ¢t at caller dag calls E(p): puttoken w« at E'’s root.

— wu Is ready .
— wu.context has (x,p’s value from t.context).
— wu.caller ;= v — caller is a field of a token.

e To process token ¢t at the sink of the dag, with instruction return:

— v :=t.caller:
— wv.wval :=twal; v.state := ready
— delete ¢

- __

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Example: Metronome |
T\

Signal Rtimer(1)

Metronome
return

Figure 3: Metronome A Signal | Rtimer(1) > Metronome
N __

-

/N

Signal Rtimer(1)

Metronome

_

return

N

Signal Rtimer(1)

0’ Metronome

-

return

0" receives from Rtimer

I”: on the left, always ready

UNIVERSITY OF TEXAS AT AUSTIN

T

N\

0 Signal 0’'Rtimer(1)

Metronome

_

return

/N

Signal Rtimer(1)

Metronome

e

return

N

Signal Rtimer(1)

0 ’'Metronome

_

O’ return

N

Signal Rtimer(1)

1"’ Metronome

e

1 return

I””: on the right, ready

T

N\

Signa Rtimer(1)

0 'Metronome

_

return
0’ respondsto Main

T

N\

Signal Rtimer(1)

1"’ Metronome

e

return "0

1 returnsto 0’

20

DEPARTMENT OF COMPUTER SCIENCES ﬂ

I””:0n the right, suspended

__

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Token structure in Metronome I

e 0" and 0” return signals to Main.
e i and ", ¢ >0, returnsignalsto (z —1)".

e i’ is permanently pending; copy i” created when it receives a signal.

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Summary (so far) |

e Compile dag for each expression.

e A token has: position, context, val, caller, state.

e Put a ready token with parameter values as context at the root of goal
dag.

e Process any ready token, with instruction:
0, 7, Site/Expr call, assign(x), return, choke

. _

DEPARTMENT OF COMPUTER SCIENCES —\

‘ where expression I

where(x)

N

0

choke
e

T

Figure 4: f where x:€ g

e Compute f as far as possible. Callto M (x) may walit.
e Compute g: At choke

— assign value to =x.
— terminate g

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

For ready token ¢ at where(x)

e Create ready tokens « and v at left and right successors.
e Create cell ¢ where the value of z will be stored. c.val := L

e Add (z,c) to wu.context.

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Site/Expr call in the left subgraph |

e Forready token ¢ atsite call M (x) where (z,c) isin t.context:

If cval # 1 thencall M (c.val); putcopy wu of t at successor.

— Immediate site: receive response r; w.val :=r; wu.state := ready
— deferred site: w.state := suspended

If cval = L then ¢ is pending waiting for c.

e Fortoken ¢ atexprcall E(x): proceed as before

delete t.

. _

DEPARTMENT OF COMPUTER SCIENCES —\

For token t at where(x), contd.

where(x)

N

choke

e

T

Given that cell c is created at where(x):

e All tokensin ¢ are killed at choke.
e Identify all such tokens by cell ¢; kill all tokens of of cell c.

o v.cell :=rc — cell 1s a new field of a token.

. _

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Processing choke |

For token t at choke:

c := t.cell
c.val := t.val
now no token waits for c:

where(x)

Y

0

choke

any token waiting only for ¢ is made ready;

delete all tokens of cell ¢

UNIVERSITY OF TEXAS AT AUSTIN

27

DEPARTMENT OF COMPUTER SCIENCES —\

Cell within cell: h where y:€ (f where x:€ g)

where(y)

where(X)

chokel

—f
choke2

T

e Suppose vy Is assigned at choke2 before z is assigned.
e Need to kill f where z:€ g’s computation, i.e, both f and g¢.

e Tokensin f and ¢ have different cells.

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Cell Tree I

e In processing token ¢ at where(x):
create cell ¢;
c.parent := t.cell

e In processing token s at choke:
kill all tokens of s.cell and descendant cells.

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ RootCell I

e The Initial token has cell RootCell.

e The cells form a tree with root RootCell.

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Summary of Runtime structure |

e Fields of a token: position, context, val, caller, state, cell.

e Fields of a cell: val, parent, waitList.

N R/

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Overall algorithm |

RootCell.val # 1. — return RootCell.val to main; terminate.
t.ready —» process instruction at t; delete ¢
t.suspended N —(3s:: s.ready)
— 0N receiving response r:
t.val := r; t.state := ready
else — “No value will be published”

Round-based Execution: Response from a deferred site is processed
only if there is no ready token.

else is same as (V¢ :: t.pending). There may be no token at all (for
0).
else is executed for M (x) where z:€ 0

The algorithm may not terminate: there are suspended tokens, but no
deferred site responds.

__

