DEPARTMENT OF COMPUTER SCIENCES —\

Program Structuring

William Cook and Jayadev Misra

Department of Computer Science
University of Texas at Austin

Email: {cook, m sra}@s. ut exas. edu
web: htt p: //wwv. cs. ut exas. edu/ user s/ psp

N /

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Program Structuring: Running an Auction |

e Advertize the item and a minimum bid price v: call Adv(v)

e Get bids: Bids(v) returns a stream of increasing bids, all above wv.

e Post successive bids at a web site by calling PostNext

Auctionq(v) A
Adv(v) > Bids(v) >u> PostNext(u) > 0

-)

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Program Baids |

Get the next bid exceeding wv.
Assume that bidders put their bids on channel c.

nextBid(v) A
c.get
>T>
(if(z>v) > let(x)
| if (x<v) > nextBid(v)

)

Output successively increasing bids, all above wv.
Bids(v) A nextBid(v) >u> (let(u) | Bids(u))
N /

DEPARTMENT OF COMPUTER SCIENCES —\

‘ A Terminating Auction |

e Terminate if no higher bid arrives for an hour (A time units).

e Post the winning bid by calling PostFinal.

e Return the value of the winning bid.

Tbhids(v) returns pairs (z,b): b=z >v, “b=z=v

Auctiong(v) A
Adv(v)
> Tbids(v)
>(£B,b)>
(if(b) > PostNext(x) > 0
| if (=b) > PostFinal(x) > let(x)

)
- Y

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Tbids I

Tbhids(v) returns a stream of pairs (z, b):
x Isabid, x>v,and b iIs boolean.

b = x exceeds the previous bid
-b = x equals the previous bid,
l.e., no higher bid has been received in an hour.

Thids(v) A
let(z,b) | if (b) > Tbids(x)
where
(z,b):€ nextBid(v) >u> let(u,true)
| Rtimer(h) > let(v,false)

N /

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Batch Processing the Bids |

e Post higher bids only once each hour.

e As before, terminate if no higher bid arrives for an hour.
e As before, post the winning bid by calling PostFinal.

e As before, return the value of the winning bid.

Auctiong(v) A
Adv(v)
> Hbids(v)
>(z,b)>
(if(b) > PostNext(x) > 0
| if(=b) > PostFinal(x) > let(x)

)
. Y

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Hbids I

Hbids(v) returns a stream of pairs (z, b), one per hour:
x Isabid, x>v,and b iIs boolean.

b = x IS the best bid in the last hour and exceeds the last bid
-b = x equals the previous bid,
l.e., no higher bid has been received in an hour.

Hbids(v) A
clock
>t> bestBid(t + h,v)
>T>

(let(x,z # v)
) | if(z #£v) > Hbids(x)

N /

DEPARTMENT OF COMPUTER SCIENCES —\

‘ best Bid I

o bestBid(t,v) where t is an absolute time and wv is a bid,
e Returns x, x > v, where z is the best bid received up to t¢.

e If x = v then no better bid than v has been received up to t¢.

bestBid(t,v) A
(if (b) > bestBid(t,y) | if (=b) > let(v)
where
(y,b):€ nextBid(v) >x> let(x,true)
| Atimer(t) >x> let(x,false)

N /

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Custom Site I

Sites may be specific to an application.

e Call sites M;,---, M, and respond after a majority of them do.
e Use site May to maintain counter c; initially ¢=0.

e Calling Maj increments ¢, and returns a signal iff 2 x ¢ > k.

let(u)
where
we My > Maj | -+ | My > Maj

N Y

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Custom Site I

Expressions f and ¢ publish increasing sequences of integers.
Publish their merge, casting out duplicates.

Employ site ¢ with special put method.

(f >z> c.put((z,true))
| g >x> c.put({z,false))

)

> c.get

N /

‘ Avalilable sites I

e register holds a data value. Two non-blocking methods:

— read returns the value.
— write(x) writes z into the register.

e lock is a monitor. Has a state which is full or empty.
We have to specify its initial state.

Two blocking methods:

We show how to build more complex sites.

-

— put: if empty, becomes full and returns a signal; else blocks.
— get: if full, becomes empty and returns a signal; else blocks.

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES ﬂ

10

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Execution of monitor methods I

e A monitor method is executed when it is called.

e Returns just one value. (write just f for let(z) where z:€ f)

e Several methods may be executed simultaneously;
there may be contention for data.

Typically, only one monitor method is executed at a time.

When one blocks, another is started. Consider

A: P> — @ may block.
B: R

e EXxecutions are serializable. (programmer’s obligation)

- __

UN|VERS|TY OF TEXAS AT AUST|N ___|] 11

DEPARTMENT OF COMPUTER SCIENCES —\

‘ lock can be used as a binary semaphore |

Replace P---V by

u.get - - - u.put,

where lock wu Is initially full.

N R/

7

DEPARTMENT OF COMPUTER SCIENCES ﬂ

s=1=u.full \ v.empty
s =0 =u.empty \ v.full

w: lock(full), wv: lock(empty)
P::u.get > v.put
Vi (u.get | v.get) > u.put

Serializability: Method executions can not be interleaved.
Exactly one of u.get and wv.get succeeds.
After execution of either wu.get or v.get both » and v are empty.

This prevents any other method from starting.

-

UNIVERSITY OF TEXAS AT AUSTIN

‘ Implementing Binary Semaphore, General strategy |

Semaphore s is implemented by two complementary locks, « and wv.

13

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Binary Semaphore can implement lock I

Use complementary semaphores, s and ¢, to simulate lock wu.

u.empty = s=1ANt=0
u.full = s=0At=1
site lock

s,t: BinSemaphore
get::t.P > s.V
put:: s.P > t.V

Method executions can not be interleaved.
After execution of ¢t.P or s.P both s and t are zero.

This prevents any other method from starting.

- __

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ word I

A word Is a 1-place buffer. It has two blocking methods.

1. put(x): blocks if the word is full;

otherwise, it writes z to the word and returns a signal.

2. get: blocks if the word is empty;

otherwise, returns the value of the word and makes it empty.

UNIVERSITY OF TEXAS AT AUSTIN

15

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Implementation of word I

Implement word w using lock « and register c.

Invariants
u.full = w.full
w.full = w =c

site word
u: lock(empty), c: register

put(zx) :: u.put > cowrite(x)
get 1 u.get > c.read

N R/

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Implementation is not serializable |

site word
u: lock(empty), c: register

put(zx) :: u.put > cowrite(x)

get ::u.get > c.read
Consider
u IS empty;

A attempts wu.put and succeeds;
B executes u.get and c.read, thus reading the previous value.

Conversely,
w 1S full;
P attempts wu.get and succeeds;
() executes wu.put and c.write, thus overwriting the previous value

_

UN|VERS|TY OF TEXAS AT AUST|N ___|] 17

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Correct Implementation |

Use complementary locks « and v.

u.full = w.full; v.full = w.empty
w.full = w =c

site word
u: lock(empty), v:lock(full), c: register

put(x) :: v.get > cwrite(x) > u.put
get :u.get > c.read >x> v.put > let(x)

e Either put or get succeeds. (semaphore instead of v?)

e Once a method starts executing u.empty A v.empty.
No other method can then start.

. _

‘ word’ |

word’ IS same as word with two more non-blocking methods.

1. put(x): blocks if the word is full;

otherwise, it writes z to the word and returns a signal.

2. get: blocks if the word is empty;

otherwise, returns the value of the word and makes it empty.
3. put'(z): returns true if it succeeds, false otherwise.

4. get':returns (w,true) if w isfull, (—,false) otherwise.

N

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

19

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Implementing word’, complementary locks w and wv |

u.full = w.full; v.full = w.empty
w.full = w =c

7

site word’
u: lock(empty), v:lock(full), c: register

put’(x) :let(z) > u.put > let(z) { u.put does not block}
where z:€ v.get > c.write(x) > let(true)
| u.get > let(false)

get’ ::let(z) > v.put > let(z) { v.put does not block}
where z:€ u.get >x> let(z,true)
| v.get > let(—, false)

Prove serializability with all four methods.

- __

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Unbounded Channel I

e put(x): non-blocking. Adds =z to the end of the channel.
e get: blocks if channel is empty, else returns the head of the channel.

e get': returns (w,true) if channel non-empty, else returns (—,false).

There is no put’ because the channel is unbounded.

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Implementation of Unbounded Channel |

Site UnboundedChannel
p: UnboundedChannel; w: word’ { w is the first word}

put(z):: w.get’
>y,b> (if (b) > p.put(y) | if (b))
> w.put(x)

get:: w.get >x> p.get’

>1y,b> (if (b) > w.put(y) | if (=b)) > let(x)

get':: w.get’
>x,b> (if (b) > p.get’ >y,c> (if(c) > w.put(y) | if (—c))

| if (—D))
> let(x,b)

22

DEPARTMENT OF COMPUTER SCIENCES —\

complementary locks,

u.full = w.full;, v.full = w.empty

Site UnboundedChannel
p: UnboundedChannel; w: word’; wu: lock(empty), wv: lock(full)

put(z):: (u.get | v.get) > w.get’
>y,b> (if (0) > p.put(y) | if (b))
> w.put(z) > u.put

get:: u.get > w.get >x> p.get’
>1y,b> (if (b) > w.put(y) > u.put | if (2b) > v.put) > let(x)

get':: (u.get | v.get) > w.get’
>x,b> (if (b) > p.get’
>y,c> (if (¢) > w.put(y) > u.put | if (—c) > v.put)
| if (mb) > v.put))
> let(x, b)

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Bounded Channel I

Site Boundedchannel(1)
w: word

Site Boundedchannel (n)
b: Boundedchannel (n — 1), w: word, wu: lock(empty), wv: lock(full)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Rendezvous |

e sender executes put, receiver executes get.
e Both methods complete together.

e Other senders, receivers are blocked until then.

For the moment, assume no data is transferred. Only signals returned.

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Implementation |

site SignalRendezvous
u: lock(empty), v:lock(empty)
put ::u.get | v.put
get ::wv.get | u.put

e sender does wv.put.
e receiver completes its operation (both v.get and wu.put)

e second sender completes its operation.

Two senders or two receivers should not be simultaneously active.

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Mutual exclusion: among senders and among receivers |

Use lock r for receivers and s for senders.

7

site SignalRendezvous
u: lock(empty), v: lock(empty),
r: lock(full), s: lock(full)

put ::s.get > (u.get | v.put) > s.put
get ::r.get > (v.get | u.put) > r.put

. _

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Rendezvous with Data Transfer I

ldentical program, except v is a word.

site Rendezvous
u: lock(empty), v: word,

r: lock(full), s: lock(full)

put(x) :: s.get > (u.get | v.put(z)) > s.put
get r.get > f >y> rput > let(y)

fA let(z,y) > let(y)
where x:€ u.put

y:€ v.get

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Exercise I

In (f where z:€ g), executions of f and g start simultaneously.
Modify the expression so that ¢ is evaluated when needed.
In (M > N(x) where z:€ g), g may not be evaluated at all.

Hint: Use a boolean register site.

N R/

