Distributed Execution

William Cook and Jayadev Misra

Department of Computer Science
University of Texas at Austin

Email: {cook, misra}@cs.utexas.edu
web: http://www.cs.utexas.edu/users/psp
Centralized Execution Model

- semantics (and execution) described for one machine.

- Then,
 - immediate sites respond instantaneously.
 - Rtimer is exact.

- We develop a theory to permit distributed execution.
Distributed Execution Model

- Assign subexpressions to different machines.
- Execution starts on a goal machine.
- A machine requests another machine to start evaluation.
- The calling machine supplies the context and values of variables as they become defined.
- The calling machine orders all tokens to be killed, and asks for ack.
- All messages among these machines are delivered after arbitrary but finite delay.
When can we distribute?

- $Rtimer(1) \gg let(0) \mid Rtimer(2) \gg let(1)$

Neither branch can be executed on another machine.

- $P(c, e) \Delta c.get \triangleright x \triangleright Compute(x) \triangleright y \triangleright e.put(y) \gg P(c, e)$
- $N \Delta P(c, e) \mid P(d, e)$

$c.get$ and $e.put$ are on different machines.
$P(c, e)$ and $P(d, e)$ can be evaluated on different machines.

- $Rtimer(1) \gg M \mid Rtimer(2) \gg N$

The two branches can be executed on different machines.

The theory identifies subexpressions which can be distributed.
Distributed Execution has to be faithful

- A distributed execution is valid if it mimics a centralized execution.
- The sites can not distinguish between the two execution styles.
An example

- Site *keyboard* responds at arbitrary times, or never. Its response is received immediately.

- Site *screen* responds immediately and displays a message.

 \[\cdots \text{keyboard} \Rightarrow \text{screen} \cdots\]

 can not be distributed.

Video-game:
A human responds sometime on the keyboard.

Expect to see an echo immediately.
A site is **punctual** if communication delay with it is zero.

A site is **unpunctual** if communication delay with it is arbitrary.

Simplification: Assume all sites are either punctual or unpunctual.

A punctual site has to be implemented on the caller’s machine.

An unpunctual site may be implemented on a remote machine.

Punctual: `Rtimer`, `let`, `if`, ···, all immediate sites, ···, `keyboard`, `screen`

Unpunctual: `0`, `CNN`, `PostWeb`, ··· Generic symbol `M`
Punctual Expression

- Any delay in starting it or processing its response can be detected.
- Some timing information for site calls or publications is known.
- A punctual expression has to be implemented on the caller’s machine.
- An unpunctual expression may be implemented on another machine.
- A punctual expression may have unpunctual subexpressions.
 The subexpression may be implemented on another machine.
Definition of Punctual Expression

A punctual expression is of the form

- \(S(x) \): \(S \) is punctual,
- \(f \mid g \): either \(f \) or \(g \) is punctual,
- \(f > x > g \): both \(f \) and \(g \) are punctual,
- \(f \text{ where } x \in g \): both \(f \) and \(g \) are punctual, or \(f \backslash x \) is punctual.

Obtain \(f \backslash x \) from \(f \):
Replace all site calls which have parameter \(x \) by \(0 \).
Examples: Punctual Expressions

\[\text{let}(x) \]
\[\text{let}(x) \triangleright x \triangleright \text{Rtimer}(x) \]
\[\text{let} \text{ is punctual (immediate)} \]
\[\text{both sites are punctual} \]

\[\text{Rtimer}(1) \text{ where } x : \in g \]
\[f \backslash x = \text{Rtimer}(1) \text{ is punctual} \]

\[\text{let}(x) \text{ where } x : \in \text{Rtimer}(1) \]
\[\text{let} (x) \text{ and } \text{Rtimer}(1) \text{ are both punctual} \]

\[\text{Rtimer}(1) \mid h \text{ where } x : \in g \]
\[f \backslash x = \text{Rtimer}(1) \mid h \backslash x \text{ is punctual} \]

\[\text{let}(x) \triangleright x \triangleright \text{Rtimer}(1) \]
\[\text{where } x : \in \text{Rtimer}(1) \]
\[\text{let}(x) \triangleright x \triangleright \text{Rtimer}(1) \text{ and } \text{Rtimer}(1) \]
\[\text{are both punctual} \]
Examples: Unpunctual Expressions

\[M \gg Rtimer(1) \]

\[Rtimer(1) \gg M \]

\[N(x) > x > Rtimer(x) \]

\[Rtimer(x) \text{ where } x \in M \]

\[N(x) \text{ where } x \in Rtimer(1) \]

\[let(x) \text{ where } x \in M \]
punctual within unpunctual, and vice versa

\[\text{keyboard} \rightarrow \text{screen} \mid \text{JoyStick} \rightarrow (M \mid N), \text{ where} \]

\[\text{keyboard, screen, JoyStick are punctual} \]
\[M \text{ and } N \text{ are unpunctual.} \]
Example: Distributed Execution

\[
\text{keyboard} \rightarrow \text{screen} \quad | \quad \text{JoyStick} \rightarrow (M \mid N)
\]

\[
\equiv \quad \text{keyboard} \rightarrow \text{screen} \mid f
\quad f \triangleleft \text{JoyStick} \rightarrow (M \mid N)
\]

\[
\equiv \quad \text{keyboard} \rightarrow \text{screen} \mid f
\quad f \triangleleft \text{JoyStick} \rightarrow g
\quad g \triangleleft M \mid N
\]
Some properties

- If all sites in an expression are punctual, the expression is punctual.
- If all sites in an expression are unpunctual, the expression is unpunctual.
- **Monotonicity**: An unpunctual expression remains unpunctual if you replace any site by an unpunctual site.

\[M \text{ punctual, } f(M) \text{ unpunctual, } N \text{ unpunctual} \]
\[\Rightarrow f(N) \text{ unpunctual.} \]

\[M \sqsubseteq N \Rightarrow f(M) \sqsubseteq f(N), \]
where punctual \(\sqsubseteq\) unpunctual

Proofs by structural induction.
Punctuality is conservative

- \(\text{let(} \text{true} \text{)} \)
 \[
 \begin{align*}
 >b> & \quad (\text{if}(b) \implies g) \quad \equiv \quad g \\
 & \quad | \text{if}(\neg b) \implies \text{Rtimer}(1) \\
 & \quad)
 \end{align*}
 \]
 Though the execution can be distributed, the expression is punctual.

- \(\text{Random} \ >x> \text{Rtimer}(x) \)

 \(\text{Random} \) publishes a random natural number within some bounds. The expression is punctual, and it can not be distributed.

- \(\text{Nat} \ >x> \text{Rtimer}(x) \)

 \(\text{Nat} \) publishes any natural number. Though the execution can be distributed, the expression is punctual.
Recursively defined Expressions

\[\text{Metronome} \triangleq \text{Signal} \mid \text{Rtimer}(1) \Rightarrow \text{Metronome}, \text{ i.e.} \]
\[\text{Metronome} \triangleq \text{if (true)} \mid \text{Rtimer}(1) \Rightarrow \text{Metronome} \]

\text{Signal} \text{ is punctual, so the rhs is punctual. } \text{Metronome} \text{ is punctual.} \]

\[\text{Met} \triangleq \text{Signal} \mid \underline{\text{M} \Rightarrow \text{Met}} \]

\text{unpunctual} \]

\text{Met} \text{ is punctual. Its subexpression } \text{M} \Rightarrow \text{Met} \text{ may be distributed.} \]

\[\text{Signal} \mid \text{M} \Rightarrow \text{Met} \]

\[\equiv \quad \text{Signal} \mid f \]
\[f \triangleq \text{M} \Rightarrow \text{Met} \]
The least fixed point is f is punctual. punctual \sqsubseteq unpunctual.
Existence of least fixed point

Least fixed point exists for any defined expression f.

Assume f is punctual.

- definition of f is punctual: f is punctual.

- definition of f is unpunctual: f is unpunctual.

Monotonicity: assuming f unpunctual, definition of f is unpunctual.