
An Explanation of Lengauer-Tarjan Dominators

Algorithm

Jayadev Misra
Dept. of Computer Science
The University of Texas
Austin, Texas, 78712

May 2, 2023

Revised May 25, 2023

1 Introduction

This note explains the Lengauer-Tarjan dominators algorithm given in “A Fast
Algorithm for Finding Dominators in a Flowgraph” [2], henceforth referred to
as the “original paper”. The algorithm is ingenious; though relatively simple
to state, its underlying proofs are fairly involved. I have tried to present the
proofs in a more structured fashion in this note.

2 Depth-first search

Given is a graph G with a specific node r from which every other node is
reachable. Let T be a depth-first tree (or dfs-tree) rooted at r. Each node in
the dfs-tree is identified by its preorder number, starting with r = 1. In the
example dfs-tree in Figure 1 (page 2), taken from the original paper, the tree
edges in the right figure are shown as solid arrows and the non-tree edges as
dashed arrows.

2.1 Notation

Notation for graphs The notations for edges and paths in G and T are
summarized in Table 1 (page 2). “Any path”, with a ∗ symbol, is a path of
length zero or more, so its end nodes may be identical. A “non-zero path”, with
a + symbol, is a path of length one or more, so its end nodes are different. A
path may have an optional label which appears over the path, shown as p and
q in the following table. All paths are simple.

In proofs, I use edges and paths as logical propositions, such as x
∗ p
⇝ y to

denote the proposition “there is a path p from node x to node y”. Thus, x
∗→ y

means that y is a descendant of x (and x an ancestor of y), and x
+→ y for y is

1



Figure 1: A graph and its dfs-tree; the non-tree edges are dashed arrows

edge any path non-zero path

graph x⇝ y x
∗ p
⇝ y x

+ q
⇝ y

tree x → y x
∗ p→ y x

+ q→ y

Table 1: Terminology for graph and tree paths and edges

a proper descendant of x (and x a proper ancestor of y). Because of preorder

numbers assigned to nodes, (x
∗→ y) ⇒ (x ≤ y), and (x

+→ y) ⇒ (x < y).

Observe that for any w, r
∗
⇝ w and r

∗→ w.

Write v ∈ x
∗ p
⇝ y to denote that v is a node on path p, possibly x or y.

Notation for logical formulae and proofs A quantified formula is of the
form (⊗x : q(x) : e(x)), where ⊗ is a commutative and associative binary
operator that can be applied to pairs of values in the given domain; see Misra[3],
Sections 2.6.2 and 2.6.5. The value of the formula is ⊗{e(x) | q(x)}. That is,
apply ⊗ in arbitrary order over all the values in the set {e(x) | q(x)}. Logical
connective ∀ and the arithmetic operator min are used in this note for ⊗. So,

(∀x : x ∈ u
+→ v : x > w) asserts that all proper descendants of u up to and

including v are greater than w. And, (minx : x ∈ u
+→ v : f(v)) is the smallest

value of f(x) over all x where x is in u
+→ v.

Proofs are written in a stylized fashion; see Misra[3], Section 2.7.2. 2

Lemma 1 (Lemma 1 in the original paper) Given v
∗ p
⇝ w where v ≤ w, there

2



is a node in p that is a common ancestor of v and w. 2

Observe that (1) if v = w, or v is the smallest node in p, v is the common
ancestor of v and w, and (2) if v < w, the common ancestor is a proper ancestor
of w.

3 Dominators

Dominator v of w, w ̸= r, is a node other than w that appears on every path

r
+
⇝ w. Therefore, r is a dominator of every node w, w ̸= r. The dominators

of the nodes in Figure 1 are shown in a dominator tree in Figure 2 where the
ancestors of a node are its dominators..

Figure 2: Dominator tree

Proposition 1 The dominators of any node w, w ̸= r, occur in the same order

on every path r
+
⇝ w.

Proof: Proof is by contradiction. Consider two different dominators, x and y,
of w. We may assume that both x and y are different from r because r occurs

as the first node in any path r
+
⇝ w. Suppose x and y occur in different orders

in two paths, as shown below.

r
+ p
⇝ x

+ p′

⇝ y
+ p′′

⇝ w, r
+ q
⇝ y

+ q′

⇝ x
+ q′′

⇝ w
⇒ {y ̸∈ p, y ̸∈ q′′}

r
+ p
⇝ x

+ q′′

⇝ w, y ̸∈ p, y ̸∈ q′′

⇒ {y ̸∈ r
+ pq′′

⇝ w, and y is a dominator of w}
false 2

3



The immediate dominator of w, w ̸= r, written as id(w), is the last domina-

tor along every path r
+
⇝ w. Note that each node w, w ̸= r, has an immediate

dominator, because each node has r as a dominator. And, the immediate dom-
inator of a node is unique.

Proposition 2 Given that v is a dominator of w, v
∗→ id(w).

Proof: Along the tree path r
∗ p→ w

v and id(w) are both dominators of w
⇒ {v ∈ p, id(w) ∈ p; id(w) is the last dominator in p}

v
∗→ id(w) 2

For the graph in Figure 1 (page 2), the immediate dominators are given by
the parent of each node in the dominator tree in Figure 2. In general for x an
ancestor of y in the dfs-tree, id(x) is not necessarily an ancestor of id(y) in the
dfs-tree. Absence of such a monotonicity property makes it harder to compute
the immediate dominators.

4 Semidominator

The dominators of w are some of its proper ancestors, as shown in Proposition 2
(page 5). However, as the paragraph preceding this section shows, there is no
easy way to determine the immediate dominators easily from the dfs-tree. The
original paper introduces semidominator to solve the problem.

To motivate the notion of semidominator, consider a path v
+ q
⇝ w in which

all internal nodes are greater than w. I claim that any dominator u of w is an

ancestor of v. To see this, consider the path r
∗ p→ v

+ q
⇝ w. If u is not an ancestor

of v, then (1) u ̸∈ p, and (2) u ̸= w because u is a dominator of w, and u, being

an ancestor of w, is smaller than w, so it is not in q. Then u ̸∈ r
∗ p→ v

+ q
⇝ w,

contradicting that u is a dominator of w. If we choose v to be the smallest

possible node such that in v
+ q
⇝ w all internal nodes are greater than w, then

we can eliminate all nodes larger than v as dominators of w. Such a v is the
semidominator of w.

Node v is a semidominator-candidate of w, or sd-candidate for w, if there is

a path v
+
⇝ w in which every internal node is greater than w; call such a path a

sd-path. Note that a sd-candidate of w is different from w. Since parent(w)→w
has no internal node it satisfies the condition for sd-path vacuously, so parent(w)
is a sd-candidate for w.

The smallest semidominator-candidate of w is the semidominator of w, writ-
ten as sd(w). Every node w, except r, has a semidominator because parent(w)
is a sd-candidate. The semidominator is unique because nodes have distinct
numbers. The sd-path from sd(w) to w may not be unique.

In Figure 1 (page 2), sd(3) = 2 because of the edge from its parent. And
sd(4) = 1 because of the path 1 ⇝ 8 ⇝ 9 ⇝ 10 ⇝ 5 ⇝ 4, though 2 ⇝ 6 ⇝ 4

4



is another sd-path to 4. The path from sd(x) to any node x is not necessarily
unique; the path 1 ⇝ 11 ⇝ 12 ⇝ 13 ⇝ 10 ⇝ 5 ⇝ 4 is another sd-path from 1
to 4.

Lemma 2 (Lemma 4 in the original paper) For every w, w ̸= r, there is a

tree-path r
∗→ id(w)

∗→ sd(w)
+→ w.

Proof:

parent(w) is a sd-candidate for w; so sd(w) ≤ parent(w) < w

⇒ {take sd-path sd(w)
+ q
⇝ w; apply Lemma 1 (page 2)}

sd(w)
∗
⇝ v

∗
⇝ w, where v is a common ancestor of sd(w) and w

⇒ {as an ancestor of w, v ≤ w, but internal nodes of q are > w}
sd(w) is a proper ancestor of w

⇒ {id(w), a dominator of w, is on the path r
+→ w}

id(w) is a proper ancestor of w

⇒ {the path r
∗→ sd(w)

+ q
⇝ w includes the dominator id(w).

id(w) is a proper ancestor of w, so id(w) < w.
Then id(w) is not an internal node in the sd-path q}
r

∗→ id(w)
∗→ sd(w)

+→ w 2

Note that id(w) and sd(w) may be identical.

Basis for computing the semidominators Computation of sd(w) for all
w, w ̸= r, is essential to computing the dominators. Let sd1(w) be the min-
imum sd-candidate for w over paths that have no internal node, and sd2(w)
the minimum sd-candidate over sd-paths that have some internal node. So,
sd(w) = min(sd1(w), sd2(w)).

Note that sd1(w) is always defined because parent(w)
+→ w is a sd-path with

no internal node. However, sd2(w) may not be defined because there may be
no sd-path to w with an internal node; then sd2(w) is ∞.

Proposition 3 sd1(w) is the smallest predecessor of w, i.e.
sd1(w) = (min v : v ⇝ w : v).

Proof: Any sd-path to w that has no internal node is of the form v ⇝ w. From
the definition of sd1(w), the result follows. 2

Observe that parent(w) → w, so sd1(w) ≤ parent(w) < w.

Proposition 4 sd2(w) is the minimum sd(u) over all u, where u > w and for

some v, u
∗→ v ⇝ w, i.e.

sd2(w) = (minu, v : u > w, u
∗→ v ⇝ w : sd(u)).

Proof: Assume that there is a sd-path with some internal node; if there is
no such path, according to the formal definition of min, sd2(w) = ∞. Let u

be the minimum internal node on a sd-path sd2(w)
+ p
⇝ u

∗ q
⇝ w. I show that

sd2(w) = sd(u).

5



sd2(w)
+ p
⇝ u

∗ q
⇝ w

⇒ {internal nodes of p are > u,
because u is the minimum internal node in pq}
sd2(w)

+ p
⇝ u is a sd-path to u, so sd(u) ≤ sd2(w)

⇒ {all internal nodes on sd(u)
+
⇝ u are > u, hence > w}

sd(u)
+
⇝ u

∗ q
⇝ w is a sd-path to w, so sd2(w) ≤ sd(u)

⇒ {from sd(u) ≤ sd2(w) and sd2(w) ≤ sd(u)}
sd2(w) = sd(u)

We can give a stronger characterization of the appropriate u. Let v be the

penultimate node in u
+ p
⇝ w, so the path is of the form u

∗ q
⇝ v ⇝ w (u and v

may be identical). Applying Lemma 1 (page 2)to u
∗ q
⇝ v, there is a common

ancestor of u and v in p. Since u is the smallest node in q, u is an ancestor of
v . So,

sd2(w) = (minu, v : u > w, u
∗→ v ⇝ w : sd(u)). 2

5 Basic results for immediate dominators

Notation Let w be a proper descendant of sd(w) and ancestor of w, i.e.

sd(w)
+→ w

∗→ w, such that sd(w) has the minimum value among all such

nodes, so sd(w) = (minu : sd(w)
+→ u

∗→ w : sd(u)).

In case several nodes satisfy this definition of w, pick any one arbitrarily. In
Figure 1 (page 2) sd(3) can be either 1 or 3 because both of these nodes are
proper descendants of sd(3) = 0 and ancestors of 3, and sd(1) = sd(3) = 0. 2

At this stage we have w and w, and their id and sd values. Determining the
order of these six quantities in a tree path is the crux of the paper. We have

sd(w)
∗→ sd(w)

+→ w
∗→ w. We know id(w)

∗→ sd(w) and id(w)
∗→ sd(w). But

we don’t know the relationship between {id(w), id(w)} or {id(w), sd(w)}. The
next two lemmas help fix the orders.

Regard a pair of nodes id(v) and v as a pair of matching parentheses. Paren-
theses lemma shows that all parentheses pairs on any tree path are properly

nested. That is, there is no tree path of the form id(v)
+→ id(w)

∗→ v
∗→ w.

Lemma 3 (Parentheses lemma; Lemma 5 in the original paper)

id(w)
+→ v

+→ w ≡ id(w)
∗→ id(v)

+→ w.

Proof: I prove one side of the equivalence:

id(w)
+→ v

+→ w ⇒ id(w)
∗→ id(v)

+→ w.

The other side, id(w)
+→ id(v)

+→ w ⇒ id(w)
∗→ v

+→ w, follows by symmetry
by switching the roles of v and w in the following proof.

Proof is by contradiction.

6



id(v)
+→ id(w)

∗→ v
∗ q→ w

⇒ {id(v) is v’s immediate dominator; so id(w) is not a dominator of v}
there is r

∗ p
⇝ v that does not include id(w)

⇒ {v ∗ q→ w does not include id(w)}
r

∗ p
⇝ v

∗ q→ w does not include id(w)
⇒ {id(w) is a dominator of w}

false 2

Since id(v)
+→ v, the right side of the equivalence can be strengthened to

id(w)
∗→ id(v)

+→ v
∗→ w.

Lemma 4 Let v be an ancestor of w and for all y, where v
+→ y

∗→ w, sd(y) ≥ v.

Then v
∗→ id(w).

Proof: I prove the stronger conclusion that v is a dominator of w, from which
v

∗→ id(w) follows by applying Proposition 2 (page 4).
I show the contrapositive, that if v is not a dominator of w then there is a

y, where v
+→ y

∗→ w, such that sd(y) < v.

Since v is not a dominator of w, there is a path r
∗ p
⇝ w that does not include

v. Let y be the closest proper descendant of v that is on p; such a descendant
exists because w, a proper descendant of v, is on p. I prove sd(y) < v.

Let x be the closest node preceding y on p such that x < y; such a x exists

because for a preceding node r, r ≤ v < y. In the subpath x
∗ q
⇝ y all internal

nodes are greater than y.

x
∗ q
⇝ y is a sd-path, x < y

⇒ {definition of semidominator}
sd(y) ≤ x, x

∗ q
⇝ y is a sd-path, x < y

⇒ {apply Lemma 1 (page 2)on q}
sd(y) ≤ x, x is a proper ancestor of y

⇒ {y is the closest proper descendant of v on p,
(v ̸∈ p, x ∈ p) ⇒ x ̸= v}
sd(y) ≤ x, x is a proper ancestor of v

⇒ {sd(y) ≤ x < v}
sd(y) < v 2

Theorem 1 (Theorem 3 in the paper) id(w) = id(w).

Proof: For any y:

y ∈ id(w)
∗→ sd(w)

∗→ sd(w)
+→ w

∗→ w
⇒ {divide the given path into two overlapping parts}

y ∈ id(w)
+→ w or y ∈ sd(w)

+→ w
⇒ {apply Lemma 3 (page 6) on the first term}

7



id(w)
∗→ id(y)

+→ w or y ∈ sd(w)
+→ w

⇒ {in the first term: id(w)
∗→ id(y). So, sd(y) ≥ id(y) ≥ id(w)}

sd(y) ≥ id(w) or y ∈ sd(w)
+→ w

⇒ {definition of sd(w) on the second term: sd(y) ≥ sd(w) ≥ id(w)}
sd(y) ≥ id(w)

⇒ {sd(y) ≥ id(w) for all y in id(w)
+→ w; apply Lemma 4 (page 7)}

id(w)
∗→ id(w)

⇒ {id(w) ∗→ sd(w)
+→ w

+→ w; so id(w)
+→ w

+→ w. Apply Lemma 3}
id(w)

∗→ id(w), id(w)
∗→ id(w)

+→ w

⇒ {from id(w)
∗→ id(w) and id(w)

∗→ id(w)}
id(w) = id(w) 2

Theorem 1 provides a way of computing the immediate dominators in in-
creasing order of node numbers: for every w set id(w) := id(w). Since w ≤ w,
id(w) has been computed earlier if w ̸= w. The case w = w is addressed in the
next theorem.

Theorem 2 (Theorem 2 in the paper)
If w = w then id(w) = sd(w).

Proof: From the definition of sd(w),

every y, where sd(w)
+→ y

∗→ w, has sd(y) ≥ sd(w)
⇒ {w = w implies sd(w) = sd(w)}

every y, where sd(w)
+→ y

∗→ w, has sd(y) ≥ sd(w)
⇒ {apply Lemma 4 (page 7) using sd(w) for v}

sd(w)
∗→ id(w)

⇒ {Lemma 2 (page 5): id(w)
∗→ sd(w)}

id(w) = sd(w) 2

6 Algorithm

6.1 Basis of the algorithm

The algorithm is based on the following two corollaries. Corollary 1 is used
to compute all the sd values first, followed by the computations of immediate
dominators using Corollary 2.

Corollary 1 (Theorem 4 in the original paper)
For any w, w ̸= r, sd(w) = min(sd1(w), sd2(w)) where:
sd1(w) = (min v : v ⇝ w : v), and

sd2(w) = (minu, v : u > w, u
∗→ v ⇝ w : sd(u)).

Proof: From Propositions 3 (page 5) and 4 (page 5). 2

8



Corollary 2 (Corollary 1 in the original paper)

id(w) =

{
sd(w) if w = w
id(w) otherwise

where w ∈ sd(w)
+→ w, and w has the minimum sd value among all such nodes.

Proof: From Theorem 1 (page 7) and Theorem 2 (page 8). 2

6.2 Outline of the algorithm

I present an abstract version of the algorithm that is almost a direct transliter-
ation of Corollaries 1 and 2. Many of the optimizing steps given in the original
paper do not appear in this version. I retain the description in terms of node
numbers rather than node names which is used in the original version. The out-
put of the algorithm, however, has to use the node names in the original graph
description. The mapping from node numbers to names can be implemented
by computing array vertex during the depth-first search where vertex[i] is the
name of the node with preorder number i.

I use arrays corresponding to sd1, sd2, sd, and id; arrays are shown with
square brackets, as in sd[w], to distinguish it from the function value sd(w).
Each array is indexed over 1 throughN corresponding to the node numbers other
than r. One additional array, bucket, is introduced to simplify the algorithm,
where bucket[k] is the set of nodes whose sd value is k, i.e.

(w ∈ bucket[k]) ≡ (sd(w) = k).

Programming Notation I use a pseudo notation for programming, appeal-
ing to the reader’s knowledge of imperative programming; see Misra[3], Section
4.4, for more detailed explanation of the notation.

Comments and assertions are within bold braces. Commands that are within
double quotes are explained elsewhere in this document.

The only looping construct is for , which has the form
for x ∈ S do f endfor

for a finite set or sequence S and variable x. This command executes f for
each value of x in S, in arbitrary order if S is a set and in the prescribed
order for a sequence. The sequences used in the following program are N..1
and 1..N , denoting decreasing and increasing order of values, respectively, of
the associated index1. A sequence enclosed within braces denotes the set of of
values in that sequence.

A command of the form x :∈ S, where x is a variable and S a non-empty
set denotes a non-deterministic assignment in which any value from set S is
assigned to x.

1This notation differs slightly from the description in Misra[3].

9



Immediate Dominators
————————————————————————
{ Given is a graph G with N + 1 nodes, and edges denoted as v ⇝ w.

There is a node r such that r
+
⇝ w, for all w, w ̸= r. }

“do a depth-first search of G: each node gets its preorder number; r = 0”;

for k ∈ {1..N} do bucket[k] := {} endfor;

{ compute sd in decreasing order of nodes }
for w ∈ N..1 do

“compute sd[w]” { expanded in Section 6.3 }
bucket[sd[w]] := bucket[sd[w]] ∪ {w}

endfor ;

{ compute w for all w in arbitrary node order of w }
for k ∈ {1..N} do

for w ∈ bucket[k] do { sd[w] = k }
sdwbar := (min v : v ∈ k

+→ w : sd[v]) ;

w :∈ {v | v ∈ k
+→ w, sd[v] = sdwbar} { sdwbar = sd[w] }

endfor

endfor ;

{ compute id in increasing order of nodes }
for w ∈ 1..N do

if w = w
then id[w] := sd[w]
else id[w] := id[w] { w < w; so, id[w] is known }

endif

endfor

————————————————————————

Figure 3: Outline of the Immediate Dominators Algorithm

10



6.3 Refining “compute sd[w]”

Compute sd[w] by sd[w] := min(sd1[w], sd2[w]). Computation of sd1[w] is
straightforward, by taking the minimum over all predecessors of w that are
smaller than w. To compute sd2[w], we use an additional data structure, F ,
that consists of a set of disjoint subtrees of the depth-first search tree. Initially,
each node is a singleton subtree in F . As the algorithm proceeds, non-trivial
parts of T are added to F , so an invariant is F ⊆ T .

Define root(v), for any node v, to be the root of the tree in F of which v is a
node; if v is itself the root of a tree in F , then root(v) = v. An invariant of the
computation of sd2[w] is: sd has been computed for all and only the non-root
nodes of F . Since sd is computed in decreasing node order, we can assert that
during the computation of sd2[w]: for any predecessor v of w, where v > w, the
ancestors of v that are larger than w, as required in Proposition 4 (page 5), are

exactly the ones on the path root(v)
+→ v.

Initially, F := {1..N}. After sd(w) is computed, the edge (parent(w), w) is
added to F to preserve the invariant, so root(w) ̸= w.

compute sd[w]
————————————————————————
{ F ⊆ T, (v ≤ w) ≡ (root(v) = v) }
sd1[w], sd2[w] := ∞,∞;
for v ∈ pred(w) do { pred(w) is the set of predecessors of w in G }
if v < w then sd1(w) := min(sd1(w), v)
else { v > w, so root(v) ̸= v from the invariant }

{ compute the smallest sd[u], u ∈ root(v)
+→ v. Also see Section 6.4 }

sd2[w] := min(sd2[w], (min u : u ∈ root(v)
+→ v : sd[u]));

endif

endfor ;
sd[w] := min(sd1[w], sd2[w]);
F := F ∪ {(parent(w), w)}
————————————————————————

Figure 4: Computation of sd(w) for a node w

6.4 Implementing computation of sd2[w]

The data structure F can be efficiently implemented. The two operations on it
after initialization are: (1) root(v) that computes the root of v’s tree in F , (2)
adding an edge (parent(w), w) to F after the computation of sd[w]. Disjoint set
union implements these two operations extremely efficiently. The original paper
suggests two different implementation strategies: (1) using the simple strategy of
path compression only, the algorithm runs in O(m logN) time, where m is the
number of edges and N the nodes in G, and (2) using both path compression
and union of balanced trees only, the run time becomes nearly linear in m.
Alstrup et. al. [1] modify the given algorithm to run in linear time.

11



Acknowledgement Keshav Pingali encouraged me to study the beautiful
algorithm in the original paper and structure the proofs. I am thankful to Doug
McIlroy for spotting an error in an earlier draft.

References

[1] Stephen Alstrup, Dov Harel, Peter W Lauridsen, and Mikkel Thorup. Dom-
inators in linear time. SIAM Journal on Computing, 28(6):2117–2132, 1999.

[2] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Transactions on Programming Languages
and Systems (TOPLAS), 1(1):121–141, 1979.

[3] Jayadev Misra. Effective Theories in Programming Practice. Morgan &
Claypool, 2022.

12


	Introduction
	Depth-first search
	Notation

	Dominators
	Semidominator
	Basic results for immediate dominators
	Algorithm
	Basis of the algorithm
	Outline of the algorithm
	Refining ``compute sd[w]''
	Implementing computation of sd2[w]


