
Bilateral Proofs of Concurrent Programs

Jayadev Misra

Department of Computer Science
University of Texas at Austin

WG 2.3, Istanbul
March 23–27, 2015



A Hoare-style Proof Rule

{I} s {I′}, {I′} t {E}
{I} s; t {E}

• A proof rule is a composition rule for specifications.

• The proof rules suggest constructing hierarchical proofs,from codes
and/or specifications.

• Users need only program specification, not code.



A Hoare-style Proof Rule

{I} s {I′}, {I′} t {E}
{I} s; t {E}

• A proof rule is a composition rule for specifications.

• The proof rules suggest constructing hierarchical proofs,from codes
and/or specifications.

• Users need only program specification, not code.



Concurrent Program Proofs

• Shambles, generally.

• Bright spot is model checking.

• Model checking is not sufficient.



A very difficult program to prove

{x = 0}

x := x + 1 [] x := x + 2

{x = 3}



Owicki’s Thesis

• Construct annotation of each sequential component.

{x = 0}

( {x = 0∨ x = 2} x := x + 1 {x = 1∨ x = 3}

[] {x = 0∨ x = 1} x := x + 2 {x = 2∨ x = 3})

{(x = 1∨ x = 3) ∧ (x = 2∨ x = 3)}

{x = 3}

• Show that theproofsdon’t interfere, e.g.,

{(x = 0∨ x = 2) ∧ (x = 0∨ x = 1)} x := x + 2 {x = 0∨ x = 2}



Owicki’s Thesis

• Construct annotation of each sequential component.

{x = 0}

( {x = 0∨ x = 2} x := x + 1 {x = 1∨ x = 3}

[] {x = 0∨ x = 1} x := x + 2 {x = 2∨ x = 3})

{(x = 1∨ x = 3) ∧ (x = 2∨ x = 3)}

{x = 3}

• Show that theproofsdon’t interfere, e.g.,

{(x = 0∨ x = 2) ∧ (x = 0∨ x = 1)} x := x + 2 {x = 0∨ x = 2}



Assessment

• First real proof technique for concurrent programs.

• Works well for small tightly-coupled components.

• Not scalable.

• Needs program code.

• No notion of a specification.



Rely-Guarantee of Cliff Jones

• Replace non-interference proofs by checks against stable predicates.

• First scalable proof technique for concurrent programs.

• Notion of specification and composition.

• Limited to safety properties.



Unity by Chandy and Misra

• Simplify program structure:loop 〈g → s〉 [] loop 〈g′ → s′〉 [] · · ·

• Each 〈g → s〉 is a guarded action.

• Prove program properties, not assertions at program points:

• A resource is never granted unless requested.
• A request for a resource is eventually granted.

• Specification is a set of properties.
Stable predicates are properties.

• Composition rules for specification are given.



Implementations

• Some succeses: Telephony, Control systems

• Model checkers:
UV (Markus Kaltenbach, UT),
Murφ (David Dill, Stanford),
Siemens (Jorge Cuellar),
SAL

• Implementations in other logics:
Boyer-Moore prover, Larch, HOL, Coq, Isabelle/ZF
DisCo (based on Unity) in PVS
CommUNITY workbench



Commutative Associative Fold of a bag

put and get are atomic operations on bags.

put is non-blocking, get blocking.

f1 = get(x); get(y); put(x ⊕ y)

fk = f1 [] fk−1

Show that withn items initially in s:

• the execution offn−1 terminates, and

• leaves s with one item, the fold of all the original items.



Commutative Associative Fold of a bag

put and get are atomic operations on bags.

put is non-blocking, get blocking.

f1 = get(x); get(y); put(x ⊕ y)

fk = f1 [] fk−1

Show that withn items initially in s:

• the execution offn−1 terminates, and

• leaves s with one item, the fold of all the original items.



Observations about the problem

• Desired: Respect the recursive program structure in proof.

• Note interplay between sequential and concurrent aspects.

• Entire code is not available.

• Safety: Finally s has one item, the fold of the original items.Easy.

• Progress:fn−1 terminates.Hard.

The result does not hold forfn. There is deadlock.



Program Model

A componentis one of:

• Action: Uninterruptible, terminating code, e.g.:x := x + 1, put, get.

• Sequencer: Combines components using sequential constructs, e.g.:

s; t, if b then s else t, while b do s.

• Fork: f [] g, f and g are components.
f [] g [] h = (f [] g) [] h = f [] (g [] h)

Execution:

• Sequential components follow their execution rules.

• Fork: starts all components simultaneously.

Terminates when they all do.



Program Model

A componentis one of:

• Action: Uninterruptible, terminating code, e.g.:x := x + 1, put, get.

• Sequencer: Combines components using sequential constructs, e.g.:

s; t, if b then s else t, while b do s.

• Fork: f [] g, f and g are components.
f [] g [] h = (f [] g) [] h = f [] (g [] h)

Execution:

• Sequential components follow their execution rules.

• Fork: starts all components simultaneously.

Terminates when they all do.



Effective Execution

• An action may have an optional guard:〈g → α〉.

• A blocking action, e.g.get, has an implicit guard.

• Non-blocking actions, e.g.x := x + 1, have guardtrue.

• Execution of a guarded action is:

• Effective: the guard holds and the action execution completes.

• Ineffective: the guard does not hold, execution completes and nothing
changes.

• An action execution always terminates, never blocks.



Annotation

• Traditional proof rules for actions and sequencer.

• Proof rule for Fork:
(∀i :: {pi} ci {qi})

{∀i :: pi} ( []i :: ci) {∀i :: qi}

The annotation is not necessarily valid.



Definition of Valid Annotation

• Action: Annotation is always valid.

• Sequencer: annotation is valid if each direct subcomponent’s is.

• Fork, f [] g: annotation is valid iff ’s and g’s are,
plus (OG-condition):

• For everyα ∈ f and β ∈ g,

• where preα is the precondition ofα in the annotation,

• {preα ∧ preβ} α {preβ} holds, and

• dually for actionβ.



Stable Predicate

• Given a valid annotation off , α preservespredicatep means:

{preα ∧ p} α {p}.

• p stable in f : every action off preservesp in the given valid annotation.

• Ineffective execution preserves allp.

• Stable predicates are closed under conjunction and disjunction.



Environment

• A sequential program has no concurrently executing environment.

• In f [] g, f is g’s environment and conversely.

• In most cases, code of the environment is not available, e.g.Unix.

• Determine properties of a component from the specification of the
environment.



Demon

• Treat the environment off as ademonor adversary.

• It may modify the global state.



P-Demon

• P a set of predicates. The demon preserves all predicates inP.

• Any demon preserves all local predicates off .

P∗: conjuctive, disjunctive closure ofP with the local predicates.

• Closed execution off : Demon preserves all predicates, i.e.,
the demon isskip.



Specification

For componentf , predicatesI and E, and sets of predicatesP and Q:

• a specification is:{I | P} f {Q | E}.

• Call this anaugmented assertion.

• Augmented proof rules are derived from the regular proof rules.

Later: GeneralizeQ to assert both safety and progress properties.



Meaning of {I | P} f {Q | E}

• If program f is started in anI-state, its execution either terminates in an
E-state or never terminates.

• If the environment is aP-demon, the predicates inQ are preserved byf .

Notes:

• Predicates inP and Q may not be stable inf or the demon.

• Traditional {I} f {E} is: {I | {ALL}} f {{φ} | E}.

• {| P} f {Q |} is: {true | P} f {Q | true}.



Proof Rule for Action

• Original inference:

{I} α {E}

• Augmented proof rule:
{I} α {E},

I ∈ P∗, E ∈ P∗,

For all q in Q: α preservesq, i.e.,
{I ∧ q} α {q}

{I | P} α {Q | E}



Proof Rule for Sequencer

Componentf a sequencer with direct subcomponentsfi:

• Original proof rule:
(∀i :: {Ii} fi {Ei})

{I} f {E}

• Augmented proof rule:
(∀i :: {Ii | Pi} fi {Qi | Ei})

{I | ∪i Pi} f {∩iQi | E}



Proof Rule for Fork

• Original proof rule:

{I} f {E}, {I′} g {E′}

{I ∧ I′} f [] g {E ∧ E′}

• Augmented proof rule:
{I | P} f {Q | E}, {I′ | P′} g {Q′ | E′},

P ⊆ Q′, P′ ⊆ Q Linkage

{I ∧ I′| P ∪ P′} f [] g {Q ∩ Q′ | E ∧ E′}



Justification for the Proof Rules

Claim: Given {I | P} f {Q | E},

• f has a valid annotation in which the entry and exit assertionsare I and
E, and every assertion is fromP∗, including I and E.

• Any q, q ∈ Q is stable according to the given annotation.

The claim is proved by induction on the program structure.



Proving augmented assertions directly

To prove {I | P} f {Q | E}, construct an annotation off in which:

• Entry, exit assertions areI and E.

• Every assertion is fromP∗.

• Every q in Q is stable in the given annotation.

Note: Non-interference holds by construction.



Basic Inference Rules

• Given {I | P} f {Q | E}
• (lhs expansion){I | P ∪ P′} f {Q | E}

• (rhs contraction){I | P} f {Q ∩ Q′ | E}

• (Conjunction)
{I | P} f {Q | E},
{I′ | P′} f {Q′ | E′}

{I ∧ I′ | P ∪ P′} f {Q ∪ Q′ | E ∧ E′}



Stable, Co-stable, Bistable Predicates

Given {I | P} f {Q | E}, for f a predicate in:

• Q is stable,

• P is co-stable,

• in both P and Q is bistable.

Bistable Inference Rule:

{I | P} f {Q | E},
bistabler

{I ∧ r | P} f {Q | E ∧ r}



Returning to Andreas

Given global integer variableg and local variablesxi of thread i:

{g > 0}
xi := g;

{g > 0∧ xi > 0}
g := g + xi

{g > 0}
· · ·

Observation: Construct an annotation of a program in which every assertion is
of the form p ∧ I, p is local to the program point andI is any fixed predicate.
Then the annotation is valid.

Proof: By induction on the structure of the program.



Commutative Associative Fold of a bag

put and get are atomic operations on bags.

put is non-blocking, get blocking.

f1 = get(x); get(y); put(x ⊕ y)

fk = f1 [] fk−1

Show that withn items in s initially:

• the execution offn−1 terminates, and

• leaves s with one item, the fold of all the original items.



Specification of Commutative Associative Fold

Introduce auxiliary variableqk in fk:
the bag of items acquired froms and as yet unfolded.

f1 :: initially q1 = {}

get(x) & q1 := q1 ∪ {x};

get(y) & q1 := q1 ∪ {y};

put(x ⊕ y) & q1 := q1 − {x, y}

fk = f1 [] fk−1, where qk = q1 ∪ qk−1.



Proof of Commutative Associative Fold
Prove for all k, k ≥ 1, and constantD:
{qk = {} | φ} fk {⊕(s ∪ qk) = D | qk = {}}.

Proof by induction onk. For k = 1:

{q1 = {}}

get(x) & q := q ∪ {x};

{q1 = {x}}

get(y) & q := q ∪ {y};

{q1 = {x, y}}

put(x ⊕ y) & q := q − {x, y}

{q1 = {}}

Check stable ⊕ (s ∪ q1) = D against the annotation.



Inductive Proof

{q1 = {} | φ} f1 {⊕(s ∪ q1) = D | q1 = {}}
, proved

{q1 = {} | φ} f1 {⊕(s ∪ qk+1) = D | q1 = {}}
, qk+1 = q1 ∪ qk, qk constant inf1 (1)

{qk = {} | φ} fk {⊕(s ∪ qk) = D | qk = {}}
, inductive hypothesis

{qk = {} | φ} fk {⊕(s ∪ qk+1) = D | qk = {}}
, qk+1 = q1 ∪ qk, q1 constant infk (2)

{q1 = {} ∧ qk = {} | φ} fk+1 {⊕(s ∪ qk+1) = D | q1 = {} ∧ qk = {}}
, Composition rule (linkage satisfied)

{qk+1 = {} | φ} fk+1 {⊕(s ∪ qk+1) = D | qk+1 = {}}
, qk+1 = q1 ∪ qk



Establish Exit Condition

{qk = {} | φ} fk {⊕(s ∪ qk) = D | qk = {}}
, Proved

{qk = {} | ALL} fk {⊕(s ∪ qk) = D | qk = {}}
, lhs expansion to closed execution

{qk = {} ∧ ⊕(s ∪ qk) = D | ALL}
fk

{⊕(s ∪ qk) = D | ⊕ (s ∪ qk) = D ∧ qk = {}}
, ⊕ (s ∪ qk) = D is bistable

{⊕s = D} fk {⊕s = D} , simplifying



Counting Completed Threads

Introduce auxiliary variablenck in fk:
the number of completed threads.

f1 :: initially q1, nc1 = {}, 0

get(x) & q1 := q1 ∪ {x};

get(y) & q1 := q1 ∪ {y};

put(x ⊕ y) & q1, nc1 := q1 − {x, y}, nc1 + 1

fk = f1 [] fk−1, where qk = q1 ∪ qk−1 and nck = nc1 + nck−1.



Specification: A safety property aboutnc

Prove for all k, k ≥ 1, and constantC:
{nck = 0 | φ} fk {|s| + |q| + nck = C | nck = k}.

• Proof by induction onk. Similar to the previous proof.

• Establish exit condition similarly:

{⊕s = D, |s| = C} fk {⊕s = D, |s| + k = C}

• Does not prove thatfk halts.



General Theory

• So far, only stable predicates as properties.

• In practice, more general safety and progress properties are needed.

• Allow Q to include more general properties that can be proved from a
valid annotation.



Properties Introduced in Unity

For predicatesp and q:

• p co q: now p implies q after the next step.

• p enq: now p implies eventuallyq and p until then.

• p 7→ q: now p implies eventuallyq.



Some typical Unity Inference rules

•

p co q in f ,
p co q in g

p co q in f [] g

•

p en+ q in f ,
p ∧ ¬q co p ∨ q in g
p en+ q in (f [] g)

•

p 7→ q in f ,
q 7→ r in f
p 7→ r in f



Integration with Unity

• Meaning of:

p en+ q in f ,
p ∧ ¬q co p ∨ q in g
p en+ q in (f [] g)

• as an augmented assertion is:

{| P} f {Q ∪ {p en+ q}|},
{| P′} g {Q′ ∪ {p ∧ ¬q co p ∨ q} |},

P′ ⊆ Q, P ⊆ Q′

{| P ∪ P′} f [] g {Q ∩ Q′ ∪ {p en+ q} |},



Overview of integration of Unity

• Allow P and Q to include co properties.
Earlier composition rules apply.

• Allow Q to include en and 7→ properties.
Earlier composition rules used for linkage.
New composition rules apply for each combinator.

• A typical rule:

p en+ q in f ,
p ∧ ¬q co p ∨ q in g
p en+ q in (f [] g)



Finite P-demon

• Meaning of {| P} f {Q |} with safety properties:
If the environment is aP-demon, the predicates inQ are preserved byf .

The property holds for the interleaved execution off with P-demon.

• For a progress property, this interpretation is restrictive.

{| P} f { p en+ q|}, for example, now means:

p en+ q holds for the interleaved execution off with a P-demon that
takes only a finite number of steps.

• This interpretation permits:
• Deducing progress properties off in a closed execution.
• Specification composition.
• Establishing strong progress properties.



Finite P-demon

• Meaning of {| P} f {Q |} with safety properties:
If the environment is aP-demon, the predicates inQ are preserved byf .

The property holds for the interleaved execution off with P-demon.

• For a progress property, this interpretation is restrictive.

{| P} f { p en+ q|}, for example, now means:

p en+ q holds for the interleaved execution off with a P-demon that
takes only a finite number of steps.

• This interpretation permits:
• Deducing progress properties off in a closed execution.
• Specification composition.
• Establishing strong progress properties.



Finite P-demon

• Meaning of {| P} f {Q |} with safety properties:
If the environment is aP-demon, the predicates inQ are preserved byf .

The property holds for the interleaved execution off with P-demon.

• For a progress property, this interpretation is restrictive.

{| P} f { p en+ q|}, for example, now means:

p en+ q holds for the interleaved execution off with a P-demon that
takes only a finite number of steps.

• This interpretation permits:
• Deducing progress properties off in a closed execution.
• Specification composition.
• Establishing strong progress properties.



Progress Proof: Commutative Associative Fold

f1 :: initially q1, nc1 = {}, 0

get(x) & q1 := q1 ∪ {x};

get(y) & q1 := q1 ∪ {y};

put(x ⊕ y) & q1, nc1 := q1 − {x, y}, nc1 + 1

fk = f1 [] fk−1, where qk = q1 ∪ qk−1 and nck = nc1 + nck−1.



Progress Proof: Commutative Associative Fold; Contd.

Show in fk: if initially |s| > k then eventuallyqk = {} and nck = k.

Formally, {|s| > k} fk {true 7→ qk = {} ∧ nck = k |}


