Bilateral Proofs of Concurrent Programs

Jayadev Misra

Department of Computer Science
University of Texas at Austin

WG 2.3, Istanbul
March 23–27, 2015
A Hoare-style Proof Rule

\[
\{I\} s \{I'\}, \quad \{I'\} t \{E\}
\]

\[
\{I\} s; t \{E\}
\]

- A proof rule is a composition rule for specifications.
- The proof rules suggest constructing hierarchical proofs, from codes and/or specifications.
- Users need only program specification, not code.
A Hoare-style Proof Rule

\[
\frac{\{I\} \ s \ \{I'\}, \ \{I'\} \ t \ \{E\}}{\{I\} \ s; \ t \ \{E\}}
\]

- A proof rule is a composition rule for specifications.

- The proof rules suggest constructing hierarchical proofs, from codes and/or specifications.

- Users need only program specification, not code.
Concurrent Program Proofs

- Shambles, generally.
- Bright spot is model checking.
- Model checking is not sufficient.
A very difficult program to prove

\(\{x = 0\} \)

\(x := x + 1 \parallel x := x + 2 \)

\(\{x = 3\} \)
Owicki’s Thesis

• Construct annotation of each sequential component.

\[
\{ x = 0 \} \\
\begin{align*}
(\{ x = 0 \lor x = 2 \} & \quad x := x + 1 \quad \{ x = 1 \lor x = 3 \} \\
\| & \quad \{ x = 0 \lor x = 1 \} \quad x := x + 2 \quad \{ x = 2 \lor x = 3 \} \\
\end{align*}
\]

\[
\{(x = 1 \lor x = 3) \land (x = 2 \lor x = 3) \} \\
\{ x = 3 \}
\]

• Show that the proofs don’t interfere, e.g.,

\[
\{(x = 0 \lor x = 2) \land (x = 0 \lor x = 1) \} \quad x := x + 2 \quad \{ x = 0 \lor x = 2 \}
\]
Owicki’s Thesis

- Construct annotation of each sequential component.

\[
\begin{align*}
\{x = 0\} \\
(\{x = 0 \lor x = 2\} \ x := x + 1 \ \{x = 1 \lor x = 3\} \\
\lor \ \{x = 0 \lor x = 1\} \ x := x + 2 \ \{x = 2 \lor x = 3\}) \\
\{(x = 1 \lor x = 3) \land (x = 2 \lor x = 3)\} \\
\{x = 3\}
\end{align*}
\]

- Show that the proofs don’t interfere, e.g.,

\[
\{(x = 0 \lor x = 2) \land (x = 0 \lor x = 1)\} \ x := x + 2 \ \{x = 0 \lor x = 2\}
\]
Assessment

• First real proof technique for concurrent programs.

• Works well for small tightly-coupled components.

• Not scalable.

• Needs program code.

• No notion of a specification.
Rely-Guarantee of Cliff Jones

- Replace non-interference proofs by checks against stable predicates.
- First scalable proof technique for concurrent programs.
- Notion of specification and composition.
- Limited to safety properties.
Unity by Chandy and Misra

- Simplify program structure: \(\text{loop } \langle g \rightarrow s \rangle \parallel \text{loop } \langle g' \rightarrow s' \rangle \parallel \ldots \)

- Each \(\langle g \rightarrow s \rangle \) is a guarded action.

- Prove program properties, not assertions at program points:
 - A resource is never granted unless requested.
 - A request for a resource is eventually granted.

- Specification is a set of properties.
 Stable predicates are properties.

- Composition rules for specification are given.
Implementations

- Some successes: Telephony, Control systems

- Model checkers:
 UV (Markus Kaltenbach, UT),
 Murϕ (David Dill, Stanford),
 Siemens (Jorge Cuellar),
 SAL

- Implementations in other logics:
 Boyer-Moore prover, Larch, HOL, Coq, Isabelle/ZF
 DisCo (based on Unity) in PVS
 CommUNITY workbench
Commutative Associative Fold of a bag

put and *get* are atomic operations on bag *s*.

put is non-blocking, *get* blocking.

\[f_1 = \text{get}(x); \text{get}(y); \text{put}(x \oplus y) \]

\[f_k = f_1 \parallel f_{k-1} \]

Show that with *n* items initially in *s*:

- the execution of *f_{n-1}* terminates, and

- leaves *s* with one item, the fold of all the original items.
Commutative Associative Fold of a bag

put and *get* are atomic operations on bag *s*.

put is non-blocking, *get* blocking.

\[
f_1 = \text{get}(x); \text{get}(y); \text{put}(x \oplus y)
\]

\[
f_k = f_1 \parallel f_{k-1}
\]

Show that with *n* items initially in *s*:

- the execution of *f_{n-1}* terminates, and
- leaves *s* with one item, the fold of all the original items.
Observations about the problem

- Desired: Respect the recursive program structure in proof.
- Note interplay between sequential and concurrent aspects.
- Entire code is not available.
- Safety: Finally, s has one item, the fold of the original items. Easy.
- Progress: f_{n-1} terminates. Hard.

The result does not hold for f_n. There is deadlock.
Program Model

A component is one of:

- **Action**: Uninterruptible, terminating code, e.g.: \(x := x + 1 \), put, get.

- **Sequencer**: Combines components using sequential constructs, e.g.:
 \[
 s; \ t, \ \textbf{if} \ b \ \textbf{then} \ s \ \textbf{else} \ t, \ \textbf{while} \ b \ \textbf{do} \ s.
 \]

- **Fork**: \(f \parallel g \), \(f \) and \(g \) are components.
 \[
 f \parallel g \parallel h = (f \parallel g) \parallel h = f \parallel (g \parallel h)
 \]

Execution:

- Sequential components follow their execution rules.

- Fork: starts all components simultaneously.

Terminates when they all do.
Program Model

A **component** is one of:

- **Action**: Uninterruptible, terminating code, e.g.: $x := x + 1$, *put*, *get*.

- **Sequencer**: Combines components using sequential constructs, e.g.:

 $s; \ t, \ \textbf{if} \ b \ \textbf{then} \ s \ \textbf{else} \ t, \ \textbf{while} \ b \ \textbf{do} \ s.$

- **Fork**: $f \parallel g$, f and g are components.

 $f \parallel g \parallel h = (f \parallel g) \parallel h = f \parallel (g \parallel h)$

Execution:

- Sequential components follow their execution rules.

- Fork: starts all components simultaneously.

 Terminates when they all do.
Effective Execution

- An action may have an optional guard: \(\langle g \rightarrow \alpha \rangle \).

- A blocking action, e.g. `get`, has an implicit guard.

- Non-blocking actions, e.g. \(x := x + 1 \), have guard \(true \).

- Execution of a guarded action is:
 - **Effective**: the guard holds and the action execution completes.
 - **Ineffective**: the guard does not hold, execution completes and nothing changes.

- An action execution always terminates, never blocks.
• Traditional proof rules for actions and sequencer.

• Proof rule for Fork:

\[
(\forall i :: \{p_i\} c_i \{q_i\}) \\
\{\forall i :: p_i\} (|| i :: c_i) \{\forall i :: q_i\}
\]

The annotation is not necessarily valid.
Definition of Valid Annotation

- **Action**: Annotation is always valid.

- **Sequencer**: annotation is valid if each direct subcomponent’s is.

- **Fork, \(f \mid g \)**: annotation is valid if \(f \)’s and \(g \)’s are, plus (OG-condition):
 - For every \(\alpha \in f \) and \(\beta \in g \),
 - where \(pre_\alpha \) is the precondition of \(\alpha \) in the annotation,
 - \(\{pre_\alpha \land pre_\beta\} \alpha \{pre_\beta\} \) holds, and
 - dually for action \(\beta \).
Stable Predicate

- Given a valid annotation of f, α preserves predicate p means:
 $$\{\text{pre}_\alpha \land p\} \xrightarrow{\alpha} \{p\}.$$

- p stable in f: every action of f preserves p in the given valid annotation.

- Ineffective execution preserves all p.

- Stable predicates are closed under conjunction and disjunction.
Environment

- A sequential program has no concurrently executing environment.
- In \(f \parallel g \), \(f \) is \(g \)'s environment and conversely.
- In most cases, code of the environment is not available, e.g. Unix.
- Determine properties of a component from the specification of the environment.
Demon

- Treat the environment of f as a demon or adversary.
- It may modify the global state.
P-Demon

- P a set of predicates. The demon preserves all predicates in P.

- Any demon preserves all local predicates of f.

 P^*: conjunctive, disjunctive closure of P with the local predicates.

- Closed execution of f: Demon preserves all predicates, i.e., the demon is $skip$.
For component f, predicates I and E, and sets of predicates P and Q:

- a specification is: $\{I \mid P\} f \{Q \mid E\}$.

- Call this an augmented assertion.

- Augmented proof rules are derived from the regular proof rules.

Later: Generalize Q to assert both safety and progress properties.
Meaning of \(\{I \mid P\} \mathcal{f} \{Q \mid E\} \)

- If program \(f \) is started in an \(I \)-state, its execution either terminates in an \(E \)-state or never terminates.

- If the environment is a \(P \)-demon, the predicates in \(Q \) are preserved by \(f \).

Notes:

- Predicates in \(P \) and \(Q \) may not be stable in \(f \) or the demon.

- Traditional \(\{I\} \mathcal{f} \{E\} \) is: \(\{I \mid \{ALL\}\} \mathcal{f} \{\{\phi\} \mid E\} \).

- \(\{\mid P\} \mathcal{f} \{Q \mid \} \) is: \(\{true \mid P\} \mathcal{f} \{Q \mid true\} \).
Proof Rule for Action

- Original inference:
 \[\{I\} \alpha \{E\} \]

- Augmented proof rule:
 \[\{I\} \alpha \{E\}, \]
 \[I \in P^*, \ E \in P^*, \]
 \[\text{For all } q \text{ in } Q: \ \alpha \text{ preserves } q, \ i.e., \]
 \[\{I \land q\} \alpha \{q\} \]

\[
\{I \mid P\} \alpha \{Q \mid E\}
\]
Proof Rule for Sequencer

Component f a sequencer with direct subcomponents f_i:

- Original proof rule:
 \[
 \left(\forall i :: \{I_i\} f_i \{E_i\} \right) \\
 \downarrow \\
 \{I\} f \{E\}
 \]

- Augmented proof rule:
 \[
 \left(\forall i :: \{I_i \mid P_i\} f_i \{Q_i \mid E_i\} \right) \\
 \downarrow \\
 \{I \mid \bigcup_i P_i\} f \{\bigcap_i Q_i \mid E\}
Proof Rule for Fork

- Original proof rule:

\[
\{I\} f \{E\}, \{I'\} g \{E'\} \\
\hline
\{I \land I'\} f \parallel g \{E \land E'\}
\]

- Augmented proof rule:

\[
\{I \mid P\} f \{Q \mid E\}, \{I' \mid P'\} g \{Q' \mid E'\}, \\
P \subseteq Q', P' \subseteq Q \quad \text{Linkage} \\
\hline
\{I \land I' \mid P \cup P'\} f \parallel g \{Q \cap Q' \mid E \land E'\}
\]
 Claim: Given \(\{ I \mid P \} \ f \ \{ Q \mid E \} \),

- \(f \) has a valid annotation in which the entry and exit assertions are \(I \) and \(E \), and every assertion is from \(P^* \), including \(I \) and \(E \).

- Any \(q, q \in Q \) is stable according to the given annotation.

The claim is proved by induction on the program structure.
To prove \(\{ I \mid P \} \ f \ \{ Q \mid E \} \), construct an annotation of \(f \) in which:

- Entry, exit assertions are \(I \) and \(E \).
- Every assertion is from \(P^* \).
- Every \(q \) in \(Q \) is stable in the given annotation.

Note: Non-interference holds by construction.
Basic Inference Rules

- Given \(\{I \mid P\} \, f \, \{Q \mid E\} \)
 - (lhs expansion) \(\{I \mid P \cup P'\} \, f \, \{Q \mid E\} \)
 - (rhs contraction) \(\{I \mid P\} \, f \, \{Q \cap Q' \mid E\} \)

- (Conjunction)
 \[
 \begin{align*}
 \{I \mid P\} & \, f \, \{Q \mid E\}, \\
 \{I' \mid P'\} & \, f \, \{Q' \mid E'\}
 \end{align*}
 \]
 \[
 \{I \land I' \mid P \cup P'\} \, f \, \{Q \cup Q' \mid E \land E'\}
 \]
Stable, Co-stable, Bistable Predicates

Given \(\{I \mid P\} f \{Q \mid E\} \), for \(f \) a predicate in:

- \(Q \) is stable,
- \(P \) is co-stable,
- in both \(P \) and \(Q \) is bistable.

Bistable Inference Rule:

\[
\frac{\{I \mid P\} f \{Q \mid E\}, \text{ bistable } r}{\{I \land r \mid P\} f \{Q \mid E \land r\}}
\]
Observation: Construct an annotation of a program in which every assertion is of the form \(p \land I \), \(p \) is local to the program point and \(I \) is any fixed predicate. Then the annotation is valid.

Proof: By induction on the structure of the program.
Commutative Associative Fold of a bag

put and *get* are atomic operations on bag *s*.

put is non-blocking, *get* blocking.

\[f_1 = \text{get}(x); \text{get}(y); \text{put}(x \oplus y) \]

\[f_k = f_1 \| f_{k-1} \]

Show that with *n* items in *s* initially:

- the execution of \(f_{n-1} \) terminates, and
- leaves *s* with one item, the fold of all the original items.
Specification of Commutative Associative Fold

Introduce auxiliary variable \(q_k \) in \(f_k \): the bag of items acquired from \(s \) and as yet unfolded.

\[f_1 :: \text{initially } q_1 = \{\} \]

get\((x) \& q_1 := q_1 \cup \{x\};;

get\((y) \& q_1 := q_1 \cup \{y\};;

put\((x \oplus y) \& q_1 := q_1 - \{x, y\}

\]

\[f_k = f_1 \parallel f_{k-1}, \text{ where } q_k = q_1 \cup q_{k-1}. \]
Proof of Commutative Associative Fold

Prove for all k, $k \geq 1$, and constant D:
\[
\{q_k = \{} | \varnothing\} \quad f_k \quad \{\bigoplus (s \cup q_k) = D \mid q_k = \}\}.
\]

Proof by induction on k. For $k = 1$:

\[
\{q_1 = \}\}
\]

get(x) & $q := q \cup \{x\}$;

\[
\{q_1 = \{x\}\}
\]

get(y) & $q := q \cup \{y\}$;

\[
\{q_1 = \{x, y\}\}
\]

put($x \oplus y$) & $q := q - \{x, y\}$

\[
\{q_1 = \}\}
\]

Check $\text{stable} \quad \bigoplus (s \cup q_1) = D$ against the annotation.
Inductive Proof

\[\{ q_1 = \{ \} \mid \phi \} \ f_1 \ \{ \bigoplus (s \cup q_1) = D \mid q_1 = \{ \} \} \]

, proved

\[\{ q_1 = \{ \} \mid \phi \} \ f_1 \ \{ \bigoplus (s \cup q_{k+1}) = D \mid q_1 = \{ \} \} \]

, \(q_{k+1} = q_1 \cup q_k \), \(q_k \) constant in \(f_1 \) (1)

\[\{ q_k = \{ \} \mid \phi \} \ f_k \ \{ \bigoplus (s \cup q_k) = D \mid q_k = \{ \} \} \]

, inductive hypothesis

\[\{ q_k = \{ \} \mid \phi \} \ f_k \ \{ \bigoplus (s \cup q_{k+1}) = D \mid q_k = \{ \} \} \]

, \(q_{k+1} = q_1 \cup q_k \), \(q_1 \) constant in \(f_k \) (2)

\[\{ q_1 = \{ \} \land q_k = \{ \} \mid \phi \} \ f_{k+1} \ \{ \bigoplus (s \cup q_{k+1}) = D \mid q_1 = \{ \} \land q_k = \{ \} \} \]

, Composition rule (linkage satisfied)

\[\{ q_{k+1} = \{ \} \mid \phi \} \ f_{k+1} \ \{ \bigoplus (s \cup q_{k+1}) = D \mid q_{k+1} = \{ \} \} \]

, \(q_{k+1} = q_1 \cup q_k \)
Establish Exit Condition

\{q_k = \{\} \mid \phi\} \ f_k \ \{\ominus (s \cup q_k) = D \mid q_k = \{\}\}\)

, Proved

\{q_k = \{\} \mid ALL\} \ f_k \ \{\ominus (s \cup q_k) = D \mid q_k = \{\}\}\)

, lhs expansion to closed execution

\{q_k = \{} \setminus \ominus (s \cup q_k) = D \mid ALL\}

\ f_k

\{\ominus (s \cup q_k) = D \mid \ominus (s \cup q_k) = D \setminus q_k = \{\}\}\)

, \quad \ominus (s \cup q_k) = D \text{ is bistable}

\{\ominus s = D\} \ f_k \ \{\ominus s = D\}\)

, simplifying
Counting Completed Threads

Introduce auxiliary variable nc_k in f_k: the number of completed threads.

$$f_1 \:: \text{ initially } q_1, nc_1 = \{\}, 0$$

$$\text{get}(x) \& q_1 := q_1 \cup \{x\};$$

$$\text{get}(y) \& q_1 := q_1 \cup \{y\};$$

$$\text{put}(x \oplus y) \& q_1, nc_1 := q_1 - \{x, y\}, nc_1 + 1$$

$$f_k = f_1 \parallel f_{k-1}, \text{ where } q_k = q_1 \cup q_{k-1} \text{ and } nc_k = nc_1 + nc_{k-1}.$$
Specification: A safety property about \(nc \)

Prove for all \(k \), \(k \geq 1 \), and constant \(C \):
\[\{ nc_k = 0 \mid \phi \} f_k \{ |s| + |q| + nc_k = C \mid nc_k = k \}. \]

- Proof by induction on \(k \). Similar to the previous proof.

- Establish exit condition similarly:
\[\{ \oplus s = D, |s| = C \} f_k \{ \oplus s = D, |s| + k = C \} \]

- Does not prove that \(f_k \) halts.
General Theory

- So far, only stable predicates as properties.

- In practice, more general safety and progress properties are needed.

- Allow Q to include more general properties that can be proved from a valid annotation.
Properties Introduced in Unity

For predicates p and q:

- $p \text{ co } q$: now p implies q after the next step.

- $p \text{ en } q$: now p implies eventually q and p until then.

- $p \text{ } \leftrightarrow \text{ } q$: now p implies eventually q.
Some typical Unity Inference rules

1. \(p \text{ co } q \text{ in } f, \)
 \(p \text{ co } q \text{ in } g \)
 \(\Rightarrow p \text{ co } q \text{ in } f \parallel g \)

2. \(p \text{ en}^+ q \text{ in } f, \)
 \(p \land \neg q \text{ co } p \lor q \text{ in } g \)
 \(\Rightarrow p \text{ en}^+ q \text{ in } (f \parallel g) \)

3. \(p \leftrightarrow q \text{ in } f, \)
 \(q \leftrightarrow r \text{ in } f \)
 \(\Rightarrow p \leftrightarrow r \text{ in } f \)
Integration with Unity

- Meaning of:

\[
p^{en+} q \text{ in } f,
p \wedge \neg q \text{ co } p \lor q \text{ in } g
\]

\[
p^{en+} q \text{ in } (f \parallel g)
\]

- as an augmented assertion is:

\[
\{ | P \} f \{ Q \cup \{ p^{en+} q \} | \},
\{ | P' \} g \{ Q' \cup \{ p \wedge \neg q \text{ co } p \lor q \} | \},
P' \subseteq Q, P \subseteq Q'
\]

\[
\{ | P \cup P' \} f \parallel g \{ Q \cap Q' \cup \{ p^{en+} q \} | \},
\]
Overview of integration of Unity

- Allow P and Q to include co properties. Earlier composition rules apply.

- Allow Q to include en and \mapsto properties. Earlier composition rules used for linkage. New composition rules apply for each combinator.

- A typical rule:

$$p \text{ en}^+ q \text{ in } f, \quad p \land \neg q \text{ co } p \lor q \text{ in } g \quad \Rightarrow \quad p \text{ en}^+ q \text{ in } (f \parallel g)$$
Finite P-demon

- Meaning of $\{ | P \} f \{ Q | \}$ with safety properties:
 If the environment is a P-demon, the predicates in Q are preserved by f.
 The property holds for the interleaved execution of f with P-demon.

- For a progress property, this interpretation is restrictive.
 $\{| P \} f \{ p \text{ en}^+ q | \}$, for example, now means:
 $p \text{ en}^+ q$ holds for the interleaved execution of f with a P-demon that takes only a finite number of steps.

- This interpretation permits:
 - Deducing progress properties of f in a closed execution.
 - Specification composition.
 - Establishing strong progress properties.
Finite P-demon

- Meaning of $\{ | P \} f \{ Q | \}$ with safety properties:
 If the environment is a P-demon, the predicates in Q are preserved by f.
 The property holds for the interleaved execution of f with P-demon.

- For a progress property, this interpretation is restrictive.

 $\{ | P \} f \{ p \text{ en}^+ q | \}$, for example, now means:

 $p \text{ en}^+ q$ holds for the interleaved execution of f with a P-demon that takes only a finite number of steps.

- This interpretation permits:
 - Deducing progress properties of f in a closed execution.
 - Specification composition.
 - Establishing strong progress properties.
Finite P-demon

- Meaning of $\{\| P \| f \{Q \|} with safety properties:
 If the environment is a P-demon, the predicates in Q are preserved by f.
 The property holds for the interleaved execution of f with P-demon.

- For a progress property, this interpretation is restrictive.
 $\{\| P \| f \{ p \ \text{en}^+ \ q \|} \},$ for example, now means:
 $p \ \text{en}^+ q$ holds for the interleaved execution of f with a P-demon that takes only a finite number of steps.

- This interpretation permits:
 - Deducing progress properties of f in a closed execution.
 - Specification composition.
 - Establishing strong progress properties.
Progress Proof: Commutative Associative Fold

\(f_1 :: \text{initially } q_1, nc_1 = \{\}, 0 \)

\[
\begin{align*}
\text{get}(x) \& q_1 & := q_1 \cup \{x\}; \\
\text{get}(y) \& q_1 & := q_1 \cup \{y\}; \\
\text{put}(x \oplus y) \& q_1, nc_1 & := q_1 - \{x, y\}, nc_1 + 1
\end{align*}
\]

\(f_k = f_1 \upharpoonright f_{k-1} \), where \(q_k = q_1 \cup q_{k-1} \) and \(nc_k = nc_1 + nc_{k-1} \).
Progress Proof: Commutative Associative Fold; Contd.

Show in f_k: if initially $|s| > k$ then eventually $q_k = \emptyset$ and $nc_k = k$.

Formally, $\{ |s| > k \} f_k \{ true \rightarrow q_k = \emptyset \land nc_k = k \}$