Bilateral Proofs of Concurrent Programs

Jayadev Misra

Department of Computer Science
University of Texas at Austin

WG 2.3, Istanbul
March 23-27, 2015

A Hoare-style Proof Rule

{1} s{I"}, {V'} t{E}
{I} s t{E}

A proof rule is a composition rule for specifications.

The proof rules suggest constructing hierarchical prdodsy codes
and/or specifications.

Users need only program specification, not code.

A Hoare-style Proof Rule

{1} s{I"}, {I"} t{E}
{I} st{E}

e A proof rule is a composition rule for specifications.

e The proof rules suggest constructing hierarchical prdodsy codes
and/or specifications.

e Users need only program specification, not code.

Concurrent Program Proofs

e Shambles, generally.
e Bright spot is model checking.

¢ Model checking is not sufficient.

S .
A very difficult program to prove

{x=0}

X:=X+1] X:=x+2

{x=13)

Owicki's Thesis

e Construct annotation of each sequential component.
{x=0}
({x=0vx=2}x:=x+1{x=1vx=3}
| {x=0vx=1}x:=x+2{x=2Vvx=3})

{x=1vx=3)A(x=2Vvx=23)}

{x=3}

Owicki's Thesis

e Construct annotation of each sequential component.
{x=0}
({x=0vx=2}x:=x+1{x=1vx=3}
| {x=0vx=1}x:=x+2{x=2Vvx=3})

{x=1vx=3)A(x=2Vvx=23)}

{x=3}

e Show that theoroofsdon't interfere, e.g.,

{x=0vx=2)A(x=0vx=1)} x:=x+2 {x=0Vvx=2}

Assessment

First real proof technique for concurrent programs.
Works well for small tightly-coupled components.
Not scalable.

Needs program code.

No notion of a specification.

Rely-Guarantee of Cliff Jones

Replace non-interference proofs by checks against stabtigates.
First scalable proof technique for concurrent programs.
Notion of specification and composition.

Limited to safety properties.

Unity by Chandy and Misra

Simplify program structureloop (g — s) [loop(d — &) [---
Each (g — s)isaguarded action.
Prove program properties, not assertions at program points

e Aresource is never granted unless requested.

e Arequestfor a resource is eventually granted.

Specification is a set of properties.
Stable predicates are properties.

Composition rules for specification are given.

Implementations

e Some succeses: Telephony, Control systems

e Model checkers:
UV (Markus Kaltenbach, UT),
Murg (David Dill, Stanford),
Siemens (Jorge Cuellar),
SAL

e Implementations in other logics:
Boyer-Moore prover, Larch, HOL, Coq, Isabelle/ZF
DisCo (based on Unity) in PVS
CommuUNITY workbench

Commutative Associative Fold of a bag

put and get are atomic operations on bag

put is non-blocking, get blocking.

f1 = get(x); get(y); put(x &y)
fu="f1 | fue

Commutative Associative Fold of a bag

put and get are atomic operations on bag

put is non-blocking, get blocking.
f1 = get(x); get(y); put(x & y)
fk =11 | fkes

Show that withn items initially in s:
e the execution off,_1 terminates, and

¢ |leavesswith one item, the fold of all the original items.

Observations about the problem

Desired: Respect the recursive program structure in proof.
Note interplay between sequential and concurrent aspects.
Entire code is not available.

Safety: Finally s has one item, the fold of the original itensasy

Progress:f,_1 terminatesHard

The result does not hold fok,. There is deadlock.

Program Model

A componentis one of:
e Action: Uninterruptible, terminating code, e.gx:= X+ 1, put, get.

e SequencerCombines components using sequential constructs, e.g.:

s; t, if bthen selset, whilebdos.

e Fork f | g, fand gare components.
flglh=(F [g[h=Ff [(g]h)

Program Model

A componentis one of:
e Action: Uninterruptible, terminating code, e.gx:= X+ 1, put, get.

e SequencerCombines components using sequential constructs, e.g.:

s; t, if bthen selset, whilebdos.

e Fork f | g, fand gare components.
flglh=(F [g[h=Ff [(g]h)
Execution

e Sequential components follow their execution rules.

e Fork: starts all components simultaneously.

Terminates when they all do.

Effective Execution

An action may have an optional guardg — «).
A blocking action, e.g.get, has an implicit guard.
Non-blocking actions, e.gx := X + 1, have guardtrue.

Execution of a guarded action is:

o Effective the guard holds and the action execution completes.

¢ Ineffective the guard does not hold, execution completes and nothing
changes.

An action execution always terminates, never blocks.

Annotation

e Traditional proof rules for actions and sequencer.

e Proof rule for Fork:
(Vi {pi}ci{a})
{Miuop}(izc){vi:g}

The annotation is not necessarily valid.

Definition of Valid Annotation

e Action: Annotation is always valid.
e Sequencer: annotation is valid if each direct subcompdnisnt

e Fork, f | g: annotation is valid iff’s and g's are,
plus (OG-condition:

Foreverya € f and g € g,

where pre, is the precondition ofo in the annotation,

{pre, A preg} « {prez} holds, and

dually for action .

Stable Predicate

Given a valid annotation of, « preservepredicatep means:
{prec A p} o {p}.
p stable inf: every action off preservesp in the given valid annotation.

Ineffective execution preserves gil

Stable predicates are closed under conjunction and digjmc

Environment

A sequential program has no concurrently executing ensient.
In f] g, fis g'senvironment and conversely.
In most cases, code of the environment is not available Unix.

Determine properties of a component from the specificatfahe
environment.

Demon

¢ Treat the environment of as ademonor adversary.

¢ |t may modify the global state.

P-Demon

e P aset of predicates. The demon preserves all predicats in

e Any demon preserves all local predicatesfof

P*: conjuctive, disjunctive closure dP with the local predicates.

o Closed execution of: Demon preserves all predicates, i.e.,
the demon isskip.

Specification

For componentf, predicatesl and E, and sets of predicateB and Q:
e aspecification is:{l | P} f {Q|E}.

¢ Call this anaugmented assertion
e Augmented proof rules are derived from the regular proadsul

Later: GeneralizeQ to assert both safety and progress properties.

Meaning of {I | P} f {Q|E}
o If program f is started in anl -state, its execution either terminates in a
E-state or never terminates.
e If the environment is @P-demon, the predicates i@ are preserved by.

Notes:

¢ Predicates inP and Q may not be stable irf or the demon.
e Traditional {I} f {E}is: {I | {ALL}} f {{¢} | E}.

o {|P} f {Q]}is: {true|P} f {Q]|true}.

Proof Rule for Action

e Original inference:

{1} o {E}

e Augmented proof rule:
{1} o {E},
| € P*, E€ P,

Forall gin Q: « preservesq, i.e.,

{1 Ad}a{d}

{I|P} o {Q[E}

Proof Rule for Sequencer

Componentf a sequencer with direct subcomponefits

e Original proof rule:

(Vi {Li} i {E&})

{1} {E}

e Augmented proof rule:

(Vi {li|Pi} fi {Qi|E})

{1l uiPki} f {NiQ|E}

Proof Rule for Fork

e Original proof rule:

{1} F{E}, {I"} g {E'}

{IAl'} flg {EAFE}

e Augmented proof rule:
{riPy f {QIE} {I"|P} g {Q|E},
PCQ,PCQ Linkage

{IANV|PUP} f]lg{QNQ |EAE'}

Justification for the Proof Rules

Claim: Given {I | P} f {Q|E},

e f has a valid annotation in which the entry and exit asseri@wad and
E, and every assertion is fror®*, including | and E.

e Any g, g € Qis stable according to the given annotation.

The claim is proved by induction on the program structure.

Proving augmented assertions directly

To prove {I | P} f {Q| E}, construct an annotation dfin which:
e Entry, exit assertions areand E.
e Every assertion is fronP*.
e Every gin Qis stable in the given annotation.

Note: Non-interference holds by construction.

Basic Inference Rules

e Given {I |P} f {Q|E}
e (lhs expansion)!l |PUP'} f {Q|E}

¢ (rhs contraction){! | P} f {QNQ'|E}

e (Conjunction)
{1|P f {Q|E}
{I"[P} f {Q|E}
{IANV|PUP} f {QUQ |EAE}

Stable, Co-stable, Bistable Predicates

Given {I | P} f {Q|E}, for f a predicate in:
e Qisstable
e Pisco-stable
e in both P and Qs bistable

Bistable Inference Rule:

{IIP} f {QIE},

bistabler

{IAr|P}f {Q|EAT}

Returning to Andreas

Given global integer variablg and local variables of thread i:

{g>0}

X :=0;
{g>0Ax > 0}

g:=0+X

{g>0}

Observation Construct an annotation of a program in which every assers
of the form p A I, pis local to the program point antlis any fixed predicate.
Then the annotation is valid.

Proof: By induction on the structure of the program.

Commutative Associative Fold of a bag

put and get are atomic operations on bag

put is non-blocking, get blocking.
f1 = get(x); get(y); put(x & y)
fk =11 [fiesr

Show that withn items in sinitially:
e the execution off,_1 terminates, and

¢ |leavesswith one item, the fold of all the original items.

Specification of Commutative Associative Fold

Introduce auxiliary variableg in fi:
the bag of items acquired frormand as yet unfolded.

fy ::initially g = {}
get(X) & ap == op U {X};
get(y) & g1 := a1 U {y};
put(x & y) & i == th — {X,y}

fu="1 | fke1, where gk = g1 U O—1.

Proof of Commutative Associative Fold
Prove for all k, k > 1, and constanD:

{a=A{} [0} f {&(sUa) =D | a = {}}.
Proof by induction onk. For k = 1:

{on={}}

get(x) & q:= quU {x};

{ = {x}}

get(y) & q:=qu{y}

{on = {xy}}

put(x y) & q:=q— {Xy}
{o={}}

Check stable ¢ (suU ;) = D against the annotation.

Inductive Proof

{m={}¢} f1 {&(sUm)=D|aq={}}

, proved

{m={}¢} f1 {&(SUG1) =D|aL={}}

, Ok+1 = Ch U Gk, Ok constant inf; (1)

{a={} 9o} fk {&(sUk) =D |a={}}

, inductive hypothesis

{=1{} 1o} fk {&(SUK1) =D | ={}}

, Ok+1 = Ch U Gk, 01 constant infy (2)

{fm={} Nak={}¢} fixa {®(sUG1) =D | ={} Nak={}}
, Composition rule (linkage satisfied)

{1 ={} [¢} firr {B(SUUt1) =D [Gy = {}}
v Ok+1 = 01 U Ok

Establish Exit Condition

{a={} 9o} fk {&(sUk) =D |a={}}

, Proved

{ok={} [ALL} fc {&(sUak) =D | ok = {}}
, Ins expansion to closed execution
{ac={} r@(sua) =DJ[ALL}
fi
{e(sua) =D| @ (sua) =D Aok ={}}
, @ (sUgk) = D is bistable

{®#s=D} fx {®#s=D} , simplifying

Counting Completed Threads

Introduce auxiliary variablency in fy:
the number of completed threads.

fy :initially g1, nc = {},0
get(x) & ap == op U {X};
get(y) & qu == qu U {y};
put(x ®y) & qi,nc1 := g1 — {X, y},nc1 +1

fk="f1 | fk_1, where gk = g1 U Ok—1 @and ncx = Ncy + NCx—1.

Specification: A safety property abount

Prove for all k, k > 1, and constaniC:
{nck = 0] ¢} f« {|9 + g + nck = C | ncx = k}.

e Proof by induction onk. Similar to the previous proof.

e Establish exit condition similarly:

{®#s=D,|s =C} fx {&#s=D,|s|+k=C}

¢ Does not prove thafy halts.

General Theory

e So far, only stable predicates as properties.
¢ In practice, more general safety and progress propertesegded.

e Allow Qtoinclude more general properties that can be proved from ¢
valid annotation.

Properties Introduced in Unity

For predicatesp and q:

e pcog: now pimplies g after the next step.
e peng: now pimplies eventuallyg and p until then.

e p — Q: now pimplies eventuallyq.

L
Some typical Unity Inference rules

pcoq inf,
pcog ing
pcoginf |g

pen qginf,
pA—-gcopvqging
pen qin (f]g

p—qinf,
qrrinf
p|—>rinf

Integration with Unity

e Meaning of:
pen qgin f,
pA—Qg copVvqging
pen qin (f[g)

e as an augmented assertion is:

{|P} f {QU{p en" a}|},
{IP} g {QuU{pAa—gcopva}l},
PCQ PCQ

{IPUP} flg{QNQ U{p en" a} [},

Overview of integration of Unity

e Allow Pand Qtoinclude co properties.
Earlier composition rules apply.

e Allow Qtoinclude en and +— properties.
Earlier composition rules used for linkage.
New composition rules apply for each combinator.

e Atypical rule:

pen qginf,
pA—Q CcopVvging
pen qin (f]g

Finite P-demon

e Meaning of {| P} f {Q |} with safety properties:
If the environment is @-demon, the predicates iQ are preserved by.

The property holds for the interleaved executionfaofith P-demon.

Finite P-demon

e Meaning of {| P} f {Q |} with safety properties:
If the environment is @-demon, the predicates iQ are preserved by.

The property holds for the interleaved executionfaofith P-demon.

e For a progress property, this interpretation is restrctiv
{|P} f {p ent g|}, for example, now means:

p ent g holds for the interleaved execution 6fwith a P-demon that
takes only a finite number of steps

Finite P-demon

e Meaning of {| P} f {Q |} with safety properties:
If the environment is @-demon, the predicates iQ are preserved by.

The property holds for the interleaved executionfaofith P-demon.

e For a progress property, this interpretation is restrctiv
{|P} f {p ent g|}, for example, now means:

p en™ g holds for the interleaved execution 6fwith a P-demon that
takes only a finite number of steps

e This interpretation permits:
e Deducing progress properties 6fin a closed execution.
e Specification composition.
e Establishing strong progress properties.

Progress Proof: Commutative Associative Fold

fy :initially g1, ncy = {},0
get(x) & ap == g U {X};
get(y) & qu = qu U {y};
put(x ®y) & qi,nc1 := g1 — {X, y},nc1 +1

fk="f1 | fk_1, where qx = g1 U gk—1 @and ncx = Ncy + NCx—1.

Progress Proof: Commutative Associative Fold; Contd

Show in fi: if initially |s| > k then eventuallygx = {} and nck = k.

Formally, {|s >k} i {true — gc = {} Ancc = K|}

