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A Quote from H. L. Mencken, American Essayist, 1930s

For every complex problem there is a solution that is

simple, neat and wrong.
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Research Connections with Jose Meseguer

• Thesis of Mark-Oliver Stehr
Includes extending and explaining the Unity logic

• Thesis of Musab AlTurki
Includes extending and explaining the Orc real-time semantics

• Orc can be subsumed within Maude, very easily

• And much much more.
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Motivation for the current work:
Commutative, Associative Fold

• Bag u.

Commutative, associative binary operator ⊕

Write fold of u as Σu.

• Problem: Replace all elements of u by Σu.

• Strategy: Define fk:

• reduces u by k in size, and
• the resulting bag has the same fold as the original bag.

4



An Orc Program

f1 = get(x); get(y); put(x⊕ y)

fk+1 = f1 [] fk, k ≥ 1

Apply f|u0|−1.

• No known proof technique for this program.

• I attempted using denotational semantics.

• Wrote a paper. Mailed to Jose.
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Response from Jose

I have read carefully your very interesting paper
draft over the last three days, have hand-written
many detailed comments on the draft, and written
also a good number of additional pages with
further comments. I am traveling today by train
to Madrid and will fly back to Urbana tomorrow.

There are some quite interesting and I think
useful connections with some category theory
results on completion of posets under various
kinds of limits that I worked on in the 1980s that
I would like to have the chance to relate in more
detail to your constructions;
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Figure:
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My email afterwards

Jose: There is just one way to describe your
comments on my manuscript: awesome. It is
awesome because I can not imagine replicating
something of this nature myself for someone else

...

I am eternally grateful to you, not just for your
comments, but for being a friend.
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Disgusting Anticlimax

• Could not prove the fold program.

• But got many interesting insights about concurrency, semantic theory
and my overall ignorance in these areas.

9



Denotational Semantics of Concurrent Systems

• Scott’s denotational semantics specialized to concurrent systems.

• Strong results for this specific domain.

• Inappropriate for other areas, such as sequential programs.

• Derive specification of a program from those of its components.
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Denotational Semantics

• f ⊕ g is a program constructed out of

components f and g, and

combinator ⊕, a programming language construct.

• Specifications of f and g appear as [[f ]] and [[g]].

• The specification of f ⊕ g, [[f ⊕ g]], is given by:

[[f ⊕ g]] ∆ [[f ]] [[⊕]] [[g]]

• [[⊕]] is a transformer of specifications:

It combines two specifications, [[f ]] and [[g]], to yield a specification.

Notation Overloading: use ⊕ instead of [[⊕]].
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Contributions of this work

• Specifications of components.

• A theory of transformers: functions mapping specs to specs.

• Treated:

concurrency

non-determinacy

recursion

shared resource

fairness

divergence

real-time
12



Summary

Closure Meaning Preserving Corresponding
Transformer Function

Downward Prefix-closed Smooth Monotonic
Upward Limit-closed Bismooth Continuous

• A library of smooth and bismooth transformers.

• Fixed-point theorems:
• Least upward-closed fixed point
• Min-max fixed point (to deal with fairness)
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Component Specification

• Events.

• Traces.

• A specification is a prefix-closed set of traces.
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Events associated with a component

pub(true) publish (output) a value

x.read(3) read value 3 from variable x

c.receive(”val”) receive ”val” from channel c

Heads/Tails outcome of a coin toss

x.add(5) Method call

• Events are event instances.

• They are uninterpreted, instantaneous and atomic.

• There is a universal event alphabet.
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Execution of a component (informal notion)
An execution is a sequence of events.

Toss a coin and publish the outcome.
Two possible executions:

[Heads, pub(”Heads”)]
[Tails, pub(”Tails”)]

With all intermediate executions:

[ ]
[Heads]
[Heads, pub(”Heads”)]
[Tails]
[Tails, pub(”Tails”)]
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Another Program

Two tosses, but stop if the first toss is Heads

[Heads]
[Tails,Heads]
[Tails,Tails]

Plus all the prefixes of these sequences.
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Depict Executions by a tree
Two tosses, but stop if the first toss is Heads

[Heads], [Tails,Heads], [Tails,Tails] plus the prefixes.

• Each node is an execution.
• Label on each branch is an event.
• An ancestor is a prefix.
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Infinite Executions
Toss a coin repeatedly until it lands Heads.

[ ]
[Heads] [Tails]
[Tails,Heads] [Tails,Tails]
[Tails,Tails,Heads] [Tails,Tails,Tails]
[Tails,Tails,Tails,Heads] · · ·

• An unfair coin may may always land Tails.

• Admit infinite execution: [Tails,Tails,Tails, · · · ]

• Executions described by:

{[Tailsj] j ≥ 0} ∪ {[Tailsj,Heads] j ≥ 0} ∪ {[Tailsω]}
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Status of an Execution
• Status denotes the final state of an execution. From {W,H,D}.

• Infinite execution has status D.

• Finite executions typically have status H or W. Some have D.

W is Waiting:
more autonomous computation to do or waiting for external input.

H is Halted: nothing more to do.

D is Divergent: An infinite computation.

• Example of Divergent Execution

def loop( ) = loop( )
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Trace

A trace is s[m] where
• s, status, is from {W,H,D}.

• m finite or infinite event sequence.
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Trace (formal notion)
Trace: A sequence of events plus the final state of computation.

Toss a coin repeatedly until it lands Heads:

W[ ] W[Heads] W[Tails]
H[Heads] W[Tails,Heads] W[Tails,Tails]
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Trace prefix

In the trace tree, prefix of a node is an ancestor.

Formally, s[m] ≤ s′[m′], means

s[m] = s′[m′], or

(s = W) and (m prefix of m′)

Applies to infinite traces.

• ≤ is a partial order.

• > is a well-founded order.

• W[ ] is the bottom trace.
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Prefix Closure (downward closure)

Prefix closure of trace t is the set of all its prefixes:

t∗ = {s s ≤ t}

For traceset (non-empty set of traces) p define downward closure by:

p∗ = ∪t∈p(t∗), for non-empty p

(p× q× · · · × r)∗ = p∗ × q∗ · · · × r∗ Cartesian Product
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Spec

• A specification (spec) is a non-empty prefix-closed set of traces, i.e.,
p = p∗.
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Meaning of spec

• Each trace in a spec of f is a possible execution of f in some
environment.

• So, a spec is prefix-closed.

• Deadlock: A spec that includes W[m] but no extension.

• Eventual halting:

• Every waiting trace has an extension by an autonomous event.
• There is no divergent trace.
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Tree depiction of a spec is insufficient

Toss a coin sequentially until it lands Heads.

unfair coin: {H[Tailsj,Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

fair coin: {H[Tailsj,Heads] j ≥ 0}∗

Explicit inclusion/exclusion of infinite traces in a spec.
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Denotational Semantics (repeated)

• f ⊕ g is a program constructed out of

components f and g, and

combinator ⊕, a programming language construct.

• The specification of f ⊕ g, [[f ⊕ g]] is given by:

[[f ⊕ g]] ∆ [[f ]][[⊕]][[g]]

• [[⊕]] is a transformer:

It combines two specifications, [[f ]] and [[g]], to yield a specification.

Notation Overloading: use ⊕ instead of [[⊕]].
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A Motivating Example

• Programming language construct, ⊕: ⊕ (A,B,C)

• Execute A, B concurrently.

• If A engages in e and B in e, they rendezvous.
Then start C to run concurrently with A and B.
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A Motivating Example: ⊕ (A,B,C)

• Let specifications of A, B, C be p, q, r, respectively.

• C′ starts with event a and then behaves as C:
spec is cons(a, r).

• spec of A, B, C′ running concurrently: p | q | cons(a, r).

• Retain those traces in which {e, e, a} are contiguous.
Replace these 3 events by event τ :
rendezvous({e, e, a}, τ, (p | q | cons(a, r)))

• Drop the τ symbol from each trace:
⊕′ (p, q, r) = drop(τ, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))
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Example Transformer: Sequential Composition, f ; g

• g starts executing when and only when f halts.

• A trace of f ; g is of the form:

• s[m] where s[m] is a trace of f and s is W or D, or

• s[m n] where

H[m] is a trace of f

s[n] is a trace of g
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Example Transformer: parallel composition, f | g

• f and g execute independently.

• Let s[m] be a trace of f , t[n] of g, s and t from {H,W}.

Then, f | g includes traces (s ∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W ∩W = W.

• m⊗ n is all interleavings (merge) of m and n.

• Merging with infinite sequence: fair and unfair merge.

32



Example Transformer: parallel composition, f | g

• f and g execute independently.

• Let s[m] be a trace of f , t[n] of g, s and t from {H,W}.

Then, f | g includes traces (s ∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W ∩W = W.

• m⊗ n is all interleavings (merge) of m and n.

• Merging with infinite sequence: fair and unfair merge.

32



Example Transformer: parallel composition, f | g

• f and g execute independently.

• Let s[m] be a trace of f , t[n] of g, s and t from {H,W}.

Then, f | g includes traces (s ∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W ∩W = W.

• m⊗ n is all interleavings (merge) of m and n.

• Merging with infinite sequence: fair and unfair merge.

32



Example Transformer: parallel composition, f | g

• f and g execute independently.

• Let s[m] be a trace of f , t[n] of g, s and t from {H,W}.

Then, f | g includes traces (s ∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W ∩W = W.

• m⊗ n is all interleavings (merge) of m and n.

• Merging with infinite sequence: fair and unfair merge.

32



Definition: Transformer, Trace-wise Transformer

• A transformer is a function that maps a tuple of specs to a spec:
f (p, q, · · · , r)

Notation: Infix p⊕ q for 2-tuple transformer .

• Tracewise-transformer: Maps a tuple of traces to a traceset. Then,

f (p) = ∪{f (t) t ∈ p}

p⊕ q = ∪{s⊕ t s ∈ p, t ∈ q}

• Henceforth all transformers are trace-wise.

When is f (p) a spec given that p is a spec?
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Smooth Transformer

• A smooth transformer preserves prefix closure.

• Smooth Transformer: For any trace s,

f ∗(s) = f (s∗) (Notation: f ∗(s) is (f (s))∗)
(s⊕ t)∗ = s∗ ⊕ t∗

34



Properties of smooth transformers

• For smooth f and spec p, f ∗(p) = f (p∗).

• Follows: A smooth transformer transforms specs to specs.

• Composition of smooth transformers is smooth.

• f is smooth iff
• f transforms specs to specs, and

• f is monotonic: s ≤ t ⇒ f ∗(s) ⊆ f ∗(t).
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Example of Smooth Transformer: choice

• f or g: choose to execute either f or g

transformer: s or t = {s} ∪ {t}

• or is smooth.
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Example of Smooth Transformer: cons

• Append a specific event a as the first event of every trace.

• cons(a,W[ ]) = {W[ ],W[a]}

cons(a, s[m]) = {s[a m]}

37



Example of Smooth Transformer: Filter

• A filter transformer accepts or rejects each trace.

• A filter is defined by a predicate b on traces, where

1. b(W[ ]) holds, and

2. If b(t) holds then b(s) holds for all prefixes s of t.

• A filter transformer accepts all prefixes for which b holds.

f (t) = {s b(s) ∧ s ≤ t}
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Examples of Smooth transformers

• unfair merge: f | g

• fair merge: f | ′g

• rendezvous: merge traces so that events e and e′ are contiguous.

• sequential composition: f ; g

H[m] ; t[n] = {t[m n]},

s ; t[n] = {s}, otherwise

39



Fairness

• Coin tosses are fair.

• Fair scheduler: In a multiprocess implementation every process gets to
execute eventually.

• A semaphore is granted fairly.

• Any finite interval in time can contain only a finite number of events.
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Fairness is a filter transformer

• The transformer accepts all finite traces,
accepts the fair infinite traces and rejects the unfair ones.

• Fits the definition of a filter, a smooth transformer.

Example: coin toss forever until Heads appears.

• unfair coin:

{H[Tailsj,Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

• fair coin: Apply the filter that rejects the infinite sequence of Tails.

{H[Tailsj,Heads] j ≥ 0}∗
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Shared Resource

• Consider x.read() | x.write(3),
where local variable x is initialized to 0.

• spec of x.read() includes the trace H[read(5)].

spec of program x.write(3) is H[write(3)]∗

• Applying merge: a trace of x.read() | x.write(3) is

H[read(5),write(3)], an invalid trace.
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Parallel executions may not be independent
• The complete program is

int x = 0

x.read() | x.write(3)

• The declaration “int x = 0” induces a filter transformer, x.int.

It rejects all traces that are not possible with the resource.

• Given specs p and q of x.read() and x.write(3), spec of

int x = 0

x.read() | x.write(3)

is x.int(p | q)
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Research Area

• Each shared resource is defined by a filter.

• Each filter is an acceptor of strings, i.e., a formal language.

• So, a shared resource can be specified as a language.

• The language may include infinite strings, say, for strong semaphore.

• I have defined filters for
read/write shared variables,
write-once variables,
channel,
weak and strong semaphore
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Recursion: Procedure stut()

• Toss an unfair coin
if it lands Heads halt, otherwise call stut().

• Let the spec of stut() be x.

• stut() chooses between

• halting the computation (when toss lands Heads), with spec H[ ], and

• event Tails followed by stut(), with spec cons(Tails, x)

• The transformer for choice is set union.

• x = H[ ] ∪ cons(Tails, x),
∪ and cons are smooth.
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Solutions of recursive equation: x = f (x)

• Extensively studied in denotational semantics where x, called a point, is
from a complete partial order (CPO).

• There is a partial order ⊆ in the cpo.

• There is a bottom element, ⊥.

• Every chain x0 ≤ x1... has a least upper bound (lub) y:
xi ⊆ y upper bound
y ⊆ z for any upper bound z.

• A solution of x = f (x) is a fixed point of f .

Wanted: the least fixed point, lfp(f ), according to ⊆.
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Least Fixed-point Theorem

• F is continuous means:
For every chain C, f (lub(C)) = lub(f (C)).

• Theorem: Given x = f (x) where f is continuous:

lfp(f ) = lub(f i(W[ ]))

• That is, with

x0 = ⊥, xi+1 = f (xi),

lfp(f ) = lub(x0, ..., xi, ...)
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In the current work

Specs form a complete partial order, where

• the order relation is subset order over specs, lub is set union,

• ⊥ is the W[ ],

• f , a smooth transformer is always continuous.

• Proposition: lfp(f ) is the expected outcome in an execution.
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Example: stut()

• Recursive equation: x = H[ ] ∪ cons(Tails, x)

• lfp(stut) = {H[Tailsj] j ≥ 0}∗

• This is not the correct solution.
Does not include the infinite trace D[Tailsω].

The fixed point should include the limit of all trace chains.
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The crux of the problem

• We have ordered arbitrary specs by subset ordering.
For a chain of specs p0 ⊆ p1..., lub is the union of the pis.

• Consider only upward-closed specs. For a chain of such specs, the lub is
upward-closure of their union.
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Upward Closure

• Given trace chain C, C = t0 ≤ t1....
Limit of C, lim(C), the shortest trace that has every ti as a prefix.

• Define upward closure of spec p as
p∗ = p ∪ {lim(C) C a chain in p}

• Follows: for specs, (p× q · · · × r)∗ = p∗ × q∗ · · · × r∗
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least upward-closed fixed point ( lufp)

• For recursive equation x = f (x),
the least upward-closed fixed point p is a spec such that:

p = f (p) fixed point

p = p∗ upward-closed

p ⊆ q for any upward-closed fixed point q

Note: p is a spec, so downward-closed.

• lufp(f ) may not exist for arbitrary smooth f .

52



least upward-closed fixed point ( lufp)

• For recursive equation x = f (x),
the least upward-closed fixed point p is a spec such that:

p = f (p) fixed point

p = p∗ upward-closed

p ⊆ q for any upward-closed fixed point q

Note: p is a spec, so downward-closed.

• lufp(f ) may not exist for arbitrary smooth f .

52



Bismooth Transformer

• Smooth: f (p∗) = f ∗(p), for any traceset p

• Bismooth:

Smooth (preserve downward-closure)

Spec p: f (p∗) = f ∗(p) (preserve upward-closure)

Fairness is smooth but not bismooth.

Unfair merge is bismooth, fair merge only smooth.

Continuous filter is bismooth, discontinuous filter only smooth.

All other transformers seen so far are bismooth.
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Proving Bismoothness

• A transformer f maps a spec p, a tree of traces, to f (p), another tree of
traces.

• f smooth: maps every finite path x of p to a set of paths in f (p).

• f bismooth: for every path y in f (p) there is path x in p mapping to y.

• Use Koenig’s infinity lemma: if p has finite degree, i.e., bounded
non-determinism.
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A variation of Koenig’s infinity lemma

• S and T rooted trees. S domain spec, T range.

• cover: a binary relation over S× T .
Corresponds to a transformer from S to T .

• Node x of S covers node y of T means (x, y) ∈ cover.
Also, y covered by x.

• Nodeset X covers Y ( Y covered by X):
every node of Y covered by some node of X.
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Variation, Contd.

Theorem: Given S, T and cover as above, suppose:

• Each node of T is covered by a non-empty finite set of nodes of S.

• If node x covers node y then the ancestors of x in S (that includes x)
cover the ancestors of y.

Then every path of T is covered by some path of S.
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Sufficient Condition for Bismoothness

A transformer is co-finite means:

it maps a finite number of finite traces to any finite trace.

Theorem: A transformer that is smooth, co-finite and chain continuous is
bismooth.
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Least Upward-closed Fixed-point of Bismooth Transformer

Theorem: For bismooth f , lufp(f ) = lfp∗(f )
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Revisit stut()

• Recursive equation: x = H[ ] ∪ cons(Tails, x)

• lfp(stut) = {H[Tailsj] j ≥ 0}∗

• lufp(stut())
= {From theorem}

lfp∗(stut())
= { lfp(stut) = {H[Tailsj] j ≥ 0}∗}

({H[Tailsj] j ≥ 0}∗)∗
= {computing}

{H[Tailsj j ≥ 0}∗ ∪ {D[Tailsω]}
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Fairness and Recursion

• Let x = f (x) where f is smooth, not bismooth.

• f may have no upward-closed fixed point.

• maximal fixed-point: one that includes as many limit traces as possible
(under the fairness constraint).

• the min-max fixed-point, mmfp(f ): the least maximal fixed-point.

Theorem: mmfp(f ) = the greatest fixed point of f in lfp∗(f ).
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