
A simple and neat denotational semantic theory of
concurrent systems

Jayadev Misra

Department of Computer Science
University of Texas at Austin

In Honor of Jose Meseguer
September 23 – 25, 2015

Urbana, Illinois

1

A Quote from H. L. Mencken, American Essayist, 1930s

For every complex problem there is a solution that is

simple, neat and wrong.

2

A Quote from H. L. Mencken, American Essayist, 1930s

For every complex problem there is a solution that is

simple, neat and wrong.

2

Research Connections with Jose Meseguer

• Thesis of Mark-Oliver Stehr
Includes extending and explaining the Unity logic

• Thesis of Musab AlTurki
Includes extending and explaining the Orc real-time semantics

• Orc can be subsumed within Maude, very easily

• And much much more.

3

Motivation for the current work:
Commutative, Associative Fold

• Bag u.

Commutative, associative binary operator ⊕

Write fold of u as Σu.

• Problem: Replace all elements of u by Σu.

• Strategy: Define fk:

• reduces u by k in size, and
• the resulting bag has the same fold as the original bag.

4

An Orc Program

f1 = get(x); get(y); put(x⊕ y)

fk+1 = f1 [] fk, k ≥ 1

Apply f|u0|−1.

• No known proof technique for this program.

• I attempted using denotational semantics.

• Wrote a paper. Mailed to Jose.

5

Response from Jose

I have read carefully your very interesting paper
draft over the last three days, have hand-written
many detailed comments on the draft, and written
also a good number of additional pages with
further comments. I am traveling today by train
to Madrid and will fly back to Urbana tomorrow.

There are some quite interesting and I think
useful connections with some category theory
results on completion of posets under various
kinds of limits that I worked on in the 1980s that
I would like to have the chance to relate in more
detail to your constructions;

6

Figure:

7

My email afterwards

Jose: There is just one way to describe your
comments on my manuscript: awesome. It is
awesome because I can not imagine replicating
something of this nature myself for someone else

...

I am eternally grateful to you, not just for your
comments, but for being a friend.

8

Disgusting Anticlimax

• Could not prove the fold program.

• But got many interesting insights about concurrency, semantic theory
and my overall ignorance in these areas.

9

Denotational Semantics of Concurrent Systems

• Scott’s denotational semantics specialized to concurrent systems.

• Strong results for this specific domain.

• Inappropriate for other areas, such as sequential programs.

• Derive specification of a program from those of its components.

10

Denotational Semantics

• f ⊕ g is a program constructed out of

components f and g, and

combinator ⊕, a programming language construct.

• Specifications of f and g appear as [[f]] and [[g]].

• The specification of f ⊕ g, [[f ⊕ g]], is given by:

[[f ⊕ g]] ∆ [[f]] [[⊕]] [[g]]

• [[⊕]] is a transformer of specifications:

It combines two specifications, [[f]] and [[g]], to yield a specification.

Notation Overloading: use ⊕ instead of [[⊕]].
11

Denotational Semantics

• f ⊕ g is a program constructed out of

components f and g, and

combinator ⊕, a programming language construct.

• Specifications of f and g appear as [[f]] and [[g]].

• The specification of f ⊕ g, [[f ⊕ g]], is given by:

[[f ⊕ g]] ∆ [[f]] [[⊕]] [[g]]

• [[⊕]] is a transformer of specifications:

It combines two specifications, [[f]] and [[g]], to yield a specification.

Notation Overloading: use ⊕ instead of [[⊕]].
11

Denotational Semantics

• f ⊕ g is a program constructed out of

components f and g, and

combinator ⊕, a programming language construct.

• Specifications of f and g appear as [[f]] and [[g]].

• The specification of f ⊕ g, [[f ⊕ g]], is given by:

[[f ⊕ g]] ∆ [[f]] [[⊕]] [[g]]

• [[⊕]] is a transformer of specifications:

It combines two specifications, [[f]] and [[g]], to yield a specification.

Notation Overloading: use ⊕ instead of [[⊕]].
11

Denotational Semantics

• f ⊕ g is a program constructed out of

components f and g, and

combinator ⊕, a programming language construct.

• Specifications of f and g appear as [[f]] and [[g]].

• The specification of f ⊕ g, [[f ⊕ g]], is given by:

[[f ⊕ g]] ∆ [[f]] [[⊕]] [[g]]

• [[⊕]] is a transformer of specifications:

It combines two specifications, [[f]] and [[g]], to yield a specification.

Notation Overloading: use ⊕ instead of [[⊕]].
11

Contributions of this work

• Specifications of components.

• A theory of transformers: functions mapping specs to specs.

• Treated:

concurrency

non-determinacy

recursion

shared resource

fairness

divergence

real-time
12

Summary

Closure Meaning Preserving Corresponding
Transformer Function

Downward Prefix-closed Smooth Monotonic
Upward Limit-closed Bismooth Continuous

• A library of smooth and bismooth transformers.

• Fixed-point theorems:
• Least upward-closed fixed point
• Min-max fixed point (to deal with fairness)

13

Component Specification

• Events.

• Traces.

• A specification is a prefix-closed set of traces.

14

Events associated with a component

pub(true) publish (output) a value

x.read(3) read value 3 from variable x

c.receive(”val”) receive ”val” from channel c

Heads/Tails outcome of a coin toss

x.add(5) Method call

• Events are event instances.

• They are uninterpreted, instantaneous and atomic.

• There is a universal event alphabet.

15

Events associated with a component

pub(true) publish (output) a value

x.read(3) read value 3 from variable x

c.receive(”val”) receive ”val” from channel c

Heads/Tails outcome of a coin toss

x.add(5) Method call

• Events are event instances.

• They are uninterpreted, instantaneous and atomic.

• There is a universal event alphabet.

15

Execution of a component (informal notion)
An execution is a sequence of events.

Toss a coin and publish the outcome.
Two possible executions:

[Heads, pub(”Heads”)]
[Tails, pub(”Tails”)]

With all intermediate executions:

[]
[Heads]
[Heads, pub(”Heads”)]
[Tails]
[Tails, pub(”Tails”)]

16

Execution of a component (informal notion)
An execution is a sequence of events.

Toss a coin and publish the outcome.
Two possible executions:

[Heads, pub(”Heads”)]
[Tails, pub(”Tails”)]

With all intermediate executions:

[]
[Heads]
[Heads, pub(”Heads”)]
[Tails]
[Tails, pub(”Tails”)]

16

Another Program

Two tosses, but stop if the first toss is Heads

[Heads]
[Tails,Heads]
[Tails,Tails]

Plus all the prefixes of these sequences.

17

Depict Executions by a tree
Two tosses, but stop if the first toss is Heads

[Heads], [Tails,Heads], [Tails,Tails] plus the prefixes.

• Each node is an execution.
• Label on each branch is an event.
• An ancestor is a prefix.

18

Infinite Executions
Toss a coin repeatedly until it lands Heads.

[]
[Heads] [Tails]
[Tails,Heads] [Tails,Tails]
[Tails,Tails,Heads] [Tails,Tails,Tails]
[Tails,Tails,Tails,Heads] · · ·

• An unfair coin may may always land Tails.

• Admit infinite execution: [Tails,Tails,Tails, · · ·]

• Executions described by:

{[Tailsj] j ≥ 0} ∪ {[Tailsj,Heads] j ≥ 0} ∪ {[Tailsω]}

19

Infinite Executions
Toss a coin repeatedly until it lands Heads.

[]
[Heads] [Tails]
[Tails,Heads] [Tails,Tails]
[Tails,Tails,Heads] [Tails,Tails,Tails]
[Tails,Tails,Tails,Heads] · · ·

• An unfair coin may may always land Tails.

• Admit infinite execution: [Tails,Tails,Tails, · · ·]

• Executions described by:

{[Tailsj] j ≥ 0} ∪ {[Tailsj,Heads] j ≥ 0} ∪ {[Tailsω]}

19

Status of an Execution
• Status denotes the final state of an execution. From {W,H,D}.

• Infinite execution has status D.

• Finite executions typically have status H or W. Some have D.

W is Waiting:
more autonomous computation to do or waiting for external input.

H is Halted: nothing more to do.

D is Divergent: An infinite computation.

• Example of Divergent Execution

def loop() = loop()

20

Trace

A trace is s[m] where
• s, status, is from {W,H,D}.

• m finite or infinite event sequence.

21

Trace (formal notion)
Trace: A sequence of events plus the final state of computation.

Toss a coin repeatedly until it lands Heads:

W[] W[Heads] W[Tails]
H[Heads] W[Tails,Heads] W[Tails,Tails]

22

Trace prefix

In the trace tree, prefix of a node is an ancestor.

Formally, s[m] ≤ s′[m′], means

s[m] = s′[m′], or

(s = W) and (m prefix of m′)

Applies to infinite traces.

• ≤ is a partial order.

• > is a well-founded order.

• W[] is the bottom trace.

23

Trace prefix

In the trace tree, prefix of a node is an ancestor.

Formally, s[m] ≤ s′[m′], means

s[m] = s′[m′], or

(s = W) and (m prefix of m′)

Applies to infinite traces.

• ≤ is a partial order.

• > is a well-founded order.

• W[] is the bottom trace.

23

Prefix Closure (downward closure)

Prefix closure of trace t is the set of all its prefixes:

t∗ = {s s ≤ t}

For traceset (non-empty set of traces) p define downward closure by:

p∗ = ∪t∈p(t∗), for non-empty p

(p× q× · · · × r)∗ = p∗ × q∗ · · · × r∗ Cartesian Product

24

Spec

• A specification (spec) is a non-empty prefix-closed set of traces, i.e.,
p = p∗.

25

Meaning of spec

• Each trace in a spec of f is a possible execution of f in some
environment.

• So, a spec is prefix-closed.

• Deadlock: A spec that includes W[m] but no extension.

• Eventual halting:

• Every waiting trace has an extension by an autonomous event.
• There is no divergent trace.

26

Tree depiction of a spec is insufficient

Toss a coin sequentially until it lands Heads.

unfair coin: {H[Tailsj,Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

fair coin: {H[Tailsj,Heads] j ≥ 0}∗

Explicit inclusion/exclusion of infinite traces in a spec.

27

Denotational Semantics (repeated)

• f ⊕ g is a program constructed out of

components f and g, and

combinator ⊕, a programming language construct.

• The specification of f ⊕ g, [[f ⊕ g]] is given by:

[[f ⊕ g]] ∆ [[f]][[⊕]][[g]]

• [[⊕]] is a transformer:

It combines two specifications, [[f]] and [[g]], to yield a specification.

Notation Overloading: use ⊕ instead of [[⊕]].

28

A Motivating Example

• Programming language construct, ⊕: ⊕ (A,B,C)

• Execute A, B concurrently.

• If A engages in e and B in e, they rendezvous.
Then start C to run concurrently with A and B.

29

A Motivating Example: ⊕ (A,B,C)

• Let specifications of A, B, C be p, q, r, respectively.

• C′ starts with event a and then behaves as C:
spec is cons(a, r).

• spec of A, B, C′ running concurrently: p | q | cons(a, r).

• Retain those traces in which {e, e, a} are contiguous.
Replace these 3 events by event τ :
rendezvous({e, e, a}, τ, (p | q | cons(a, r)))

• Drop the τ symbol from each trace:
⊕′ (p, q, r) = drop(τ, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

30

A Motivating Example: ⊕ (A,B,C)

• Let specifications of A, B, C be p, q, r, respectively.

• C′ starts with event a and then behaves as C:
spec is cons(a, r).

• spec of A, B, C′ running concurrently: p | q | cons(a, r).

• Retain those traces in which {e, e, a} are contiguous.
Replace these 3 events by event τ :
rendezvous({e, e, a}, τ, (p | q | cons(a, r)))

• Drop the τ symbol from each trace:
⊕′ (p, q, r) = drop(τ, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

30

A Motivating Example: ⊕ (A,B,C)

• Let specifications of A, B, C be p, q, r, respectively.

• C′ starts with event a and then behaves as C:
spec is cons(a, r).

• spec of A, B, C′ running concurrently: p | q | cons(a, r).

• Retain those traces in which {e, e, a} are contiguous.
Replace these 3 events by event τ :
rendezvous({e, e, a}, τ, (p | q | cons(a, r)))

• Drop the τ symbol from each trace:
⊕′ (p, q, r) = drop(τ, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

30

A Motivating Example: ⊕ (A,B,C)

• Let specifications of A, B, C be p, q, r, respectively.

• C′ starts with event a and then behaves as C:
spec is cons(a, r).

• spec of A, B, C′ running concurrently: p | q | cons(a, r).

• Retain those traces in which {e, e, a} are contiguous.
Replace these 3 events by event τ :
rendezvous({e, e, a}, τ, (p | q | cons(a, r)))

• Drop the τ symbol from each trace:
⊕′ (p, q, r) = drop(τ, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

30

A Motivating Example: ⊕ (A,B,C)

• Let specifications of A, B, C be p, q, r, respectively.

• C′ starts with event a and then behaves as C:
spec is cons(a, r).

• spec of A, B, C′ running concurrently: p | q | cons(a, r).

• Retain those traces in which {e, e, a} are contiguous.
Replace these 3 events by event τ :
rendezvous({e, e, a}, τ, (p | q | cons(a, r)))

• Drop the τ symbol from each trace:
⊕′ (p, q, r) = drop(τ, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

30

Example Transformer: Sequential Composition, f ; g

• g starts executing when and only when f halts.

• A trace of f ; g is of the form:

• s[m] where s[m] is a trace of f and s is W or D, or

• s[m n] where

H[m] is a trace of f

s[n] is a trace of g

31

Example Transformer: Sequential Composition, f ; g

• g starts executing when and only when f halts.

• A trace of f ; g is of the form:

• s[m] where s[m] is a trace of f and s is W or D, or

• s[m n] where

H[m] is a trace of f

s[n] is a trace of g

31

Example Transformer: parallel composition, f | g

• f and g execute independently.

• Let s[m] be a trace of f , t[n] of g, s and t from {H,W}.

Then, f | g includes traces (s ∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W ∩W = W.

• m⊗ n is all interleavings (merge) of m and n.

• Merging with infinite sequence: fair and unfair merge.

32

Example Transformer: parallel composition, f | g

• f and g execute independently.

• Let s[m] be a trace of f , t[n] of g, s and t from {H,W}.

Then, f | g includes traces (s ∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W ∩W = W.

• m⊗ n is all interleavings (merge) of m and n.

• Merging with infinite sequence: fair and unfair merge.

32

Example Transformer: parallel composition, f | g

• f and g execute independently.

• Let s[m] be a trace of f , t[n] of g, s and t from {H,W}.

Then, f | g includes traces (s ∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W ∩W = W.

• m⊗ n is all interleavings (merge) of m and n.

• Merging with infinite sequence: fair and unfair merge.

32

Example Transformer: parallel composition, f | g

• f and g execute independently.

• Let s[m] be a trace of f , t[n] of g, s and t from {H,W}.

Then, f | g includes traces (s ∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W ∩W = W.

• m⊗ n is all interleavings (merge) of m and n.

• Merging with infinite sequence: fair and unfair merge.

32

Definition: Transformer, Trace-wise Transformer

• A transformer is a function that maps a tuple of specs to a spec:
f (p, q, · · · , r)

Notation: Infix p⊕ q for 2-tuple transformer .

• Tracewise-transformer: Maps a tuple of traces to a traceset. Then,

f (p) = ∪{f (t) t ∈ p}

p⊕ q = ∪{s⊕ t s ∈ p, t ∈ q}

• Henceforth all transformers are trace-wise.

When is f (p) a spec given that p is a spec?

33

Smooth Transformer

• A smooth transformer preserves prefix closure.

• Smooth Transformer: For any trace s,

f ∗(s) = f (s∗) (Notation: f ∗(s) is (f (s))∗)
(s⊕ t)∗ = s∗ ⊕ t∗

34

Properties of smooth transformers

• For smooth f and spec p, f ∗(p) = f (p∗).

• Follows: A smooth transformer transforms specs to specs.

• Composition of smooth transformers is smooth.

• f is smooth iff
• f transforms specs to specs, and

• f is monotonic: s ≤ t ⇒ f ∗(s) ⊆ f ∗(t).

35

Example of Smooth Transformer: choice

• f or g: choose to execute either f or g

transformer: s or t = {s} ∪ {t}

• or is smooth.

36

Example of Smooth Transformer: cons

• Append a specific event a as the first event of every trace.

• cons(a,W[]) = {W[],W[a]}

cons(a, s[m]) = {s[a m]}

37

Example of Smooth Transformer: Filter

• A filter transformer accepts or rejects each trace.

• A filter is defined by a predicate b on traces, where

1. b(W[]) holds, and

2. If b(t) holds then b(s) holds for all prefixes s of t.

• A filter transformer accepts all prefixes for which b holds.

f (t) = {s b(s) ∧ s ≤ t}

38

Examples of Smooth transformers

• unfair merge: f | g

• fair merge: f | ′g

• rendezvous: merge traces so that events e and e′ are contiguous.

• sequential composition: f ; g

H[m] ; t[n] = {t[m n]},

s ; t[n] = {s}, otherwise

39

Fairness

• Coin tosses are fair.

• Fair scheduler: In a multiprocess implementation every process gets to
execute eventually.

• A semaphore is granted fairly.

• Any finite interval in time can contain only a finite number of events.

40

Fairness is a filter transformer

• The transformer accepts all finite traces,
accepts the fair infinite traces and rejects the unfair ones.

• Fits the definition of a filter, a smooth transformer.

Example: coin toss forever until Heads appears.

• unfair coin:

{H[Tailsj,Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

• fair coin: Apply the filter that rejects the infinite sequence of Tails.

{H[Tailsj,Heads] j ≥ 0}∗

41

Fairness is a filter transformer

• The transformer accepts all finite traces,
accepts the fair infinite traces and rejects the unfair ones.

• Fits the definition of a filter, a smooth transformer.

Example: coin toss forever until Heads appears.

• unfair coin:

{H[Tailsj,Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

• fair coin: Apply the filter that rejects the infinite sequence of Tails.

{H[Tailsj,Heads] j ≥ 0}∗

41

Shared Resource

• Consider x.read() | x.write(3),
where local variable x is initialized to 0.

• spec of x.read() includes the trace H[read(5)].

spec of program x.write(3) is H[write(3)]∗

• Applying merge: a trace of x.read() | x.write(3) is

H[read(5),write(3)], an invalid trace.

42

Parallel executions may not be independent
• The complete program is

int x = 0

x.read() | x.write(3)

• The declaration “int x = 0” induces a filter transformer, x.int.

It rejects all traces that are not possible with the resource.

• Given specs p and q of x.read() and x.write(3), spec of

int x = 0

x.read() | x.write(3)

is x.int(p | q)

43

Research Area

• Each shared resource is defined by a filter.

• Each filter is an acceptor of strings, i.e., a formal language.

• So, a shared resource can be specified as a language.

• The language may include infinite strings, say, for strong semaphore.

• I have defined filters for
read/write shared variables,
write-once variables,
channel,
weak and strong semaphore

44

Recursion: Procedure stut()

• Toss an unfair coin
if it lands Heads halt, otherwise call stut().

• Let the spec of stut() be x.

• stut() chooses between

• halting the computation (when toss lands Heads), with spec H[], and

• event Tails followed by stut(), with spec cons(Tails, x)

• The transformer for choice is set union.

• x = H[] ∪ cons(Tails, x),
∪ and cons are smooth.

45

Recursion: Procedure stut()

• Toss an unfair coin
if it lands Heads halt, otherwise call stut().

• Let the spec of stut() be x.

• stut() chooses between

• halting the computation (when toss lands Heads), with spec H[], and

• event Tails followed by stut(), with spec cons(Tails, x)

• The transformer for choice is set union.

• x = H[] ∪ cons(Tails, x),
∪ and cons are smooth.

45

Recursion: Procedure stut()

• Toss an unfair coin
if it lands Heads halt, otherwise call stut().

• Let the spec of stut() be x.

• stut() chooses between

• halting the computation (when toss lands Heads), with spec H[], and

• event Tails followed by stut(), with spec cons(Tails, x)

• The transformer for choice is set union.

• x = H[] ∪ cons(Tails, x),
∪ and cons are smooth.

45

Solutions of recursive equation: x = f (x)

• Extensively studied in denotational semantics where x, called a point, is
from a complete partial order (CPO).

• There is a partial order ⊆ in the cpo.

• There is a bottom element, ⊥.

• Every chain x0 ≤ x1... has a least upper bound (lub) y:
xi ⊆ y upper bound
y ⊆ z for any upper bound z.

• A solution of x = f (x) is a fixed point of f .

Wanted: the least fixed point, lfp(f), according to ⊆.

46

Least Fixed-point Theorem

• F is continuous means:
For every chain C, f (lub(C)) = lub(f (C)).

• Theorem: Given x = f (x) where f is continuous:

lfp(f) = lub(f i(W[]))

• That is, with

x0 = ⊥, xi+1 = f (xi),

lfp(f) = lub(x0, ..., xi, ...)

47

In the current work

Specs form a complete partial order, where

• the order relation is subset order over specs, lub is set union,

• ⊥ is the W[],

• f , a smooth transformer is always continuous.

• Proposition: lfp(f) is the expected outcome in an execution.

48

Example: stut()

• Recursive equation: x = H[] ∪ cons(Tails, x)

• lfp(stut) = {H[Tailsj] j ≥ 0}∗

• This is not the correct solution.
Does not include the infinite trace D[Tailsω].

The fixed point should include the limit of all trace chains.

49

The crux of the problem

• We have ordered arbitrary specs by subset ordering.
For a chain of specs p0 ⊆ p1..., lub is the union of the pis.

• Consider only upward-closed specs. For a chain of such specs, the lub is
upward-closure of their union.

50

Upward Closure

• Given trace chain C, C = t0 ≤ t1....
Limit of C, lim(C), the shortest trace that has every ti as a prefix.

• Define upward closure of spec p as
p∗ = p ∪ {lim(C) C a chain in p}

• Follows: for specs, (p× q · · · × r)∗ = p∗ × q∗ · · · × r∗

51

least upward-closed fixed point (lufp)

• For recursive equation x = f (x),
the least upward-closed fixed point p is a spec such that:

p = f (p) fixed point

p = p∗ upward-closed

p ⊆ q for any upward-closed fixed point q

Note: p is a spec, so downward-closed.

• lufp(f) may not exist for arbitrary smooth f .

52

least upward-closed fixed point (lufp)

• For recursive equation x = f (x),
the least upward-closed fixed point p is a spec such that:

p = f (p) fixed point

p = p∗ upward-closed

p ⊆ q for any upward-closed fixed point q

Note: p is a spec, so downward-closed.

• lufp(f) may not exist for arbitrary smooth f .

52

Bismooth Transformer

• Smooth: f (p∗) = f ∗(p), for any traceset p

• Bismooth:

Smooth (preserve downward-closure)

Spec p: f (p∗) = f ∗(p) (preserve upward-closure)

Fairness is smooth but not bismooth.

Unfair merge is bismooth, fair merge only smooth.

Continuous filter is bismooth, discontinuous filter only smooth.

All other transformers seen so far are bismooth.

53

Bismooth Transformer

• Smooth: f (p∗) = f ∗(p), for any traceset p

• Bismooth:

Smooth (preserve downward-closure)

Spec p: f (p∗) = f ∗(p) (preserve upward-closure)

Fairness is smooth but not bismooth.

Unfair merge is bismooth, fair merge only smooth.

Continuous filter is bismooth, discontinuous filter only smooth.

All other transformers seen so far are bismooth.

53

Proving Bismoothness

• A transformer f maps a spec p, a tree of traces, to f (p), another tree of
traces.

• f smooth: maps every finite path x of p to a set of paths in f (p).

• f bismooth: for every path y in f (p) there is path x in p mapping to y.

• Use Koenig’s infinity lemma: if p has finite degree, i.e., bounded
non-determinism.

54

A variation of Koenig’s infinity lemma

• S and T rooted trees. S domain spec, T range.

• cover: a binary relation over S× T .
Corresponds to a transformer from S to T .

• Node x of S covers node y of T means (x, y) ∈ cover.
Also, y covered by x.

• Nodeset X covers Y (Y covered by X):
every node of Y covered by some node of X.

55

Variation, Contd.

Theorem: Given S, T and cover as above, suppose:

• Each node of T is covered by a non-empty finite set of nodes of S.

• If node x covers node y then the ancestors of x in S (that includes x)
cover the ancestors of y.

Then every path of T is covered by some path of S.

56

Sufficient Condition for Bismoothness

A transformer is co-finite means:

it maps a finite number of finite traces to any finite trace.

Theorem: A transformer that is smooth, co-finite and chain continuous is
bismooth.

57

Least Upward-closed Fixed-point of Bismooth Transformer

Theorem: For bismooth f , lufp(f) = lfp∗(f)

58

Revisit stut()

• Recursive equation: x = H[] ∪ cons(Tails, x)

• lfp(stut) = {H[Tailsj] j ≥ 0}∗

• lufp(stut())
= {From theorem}

lfp∗(stut())
= { lfp(stut) = {H[Tailsj] j ≥ 0}∗}

({H[Tailsj] j ≥ 0}∗)∗
= {computing}

{H[Tailsj j ≥ 0}∗ ∪ {D[Tailsω]}

59

Fairness and Recursion

• Let x = f (x) where f is smooth, not bismooth.

• f may have no upward-closed fixed point.

• maximal fixed-point: one that includes as many limit traces as possible
(under the fairness constraint).

• the min-max fixed-point, mmfp(f): the least maximal fixed-point.

Theorem: mmfp(f) = the greatest fixed point of f in lfp∗(f).

60

