A fundamental theorem about minimum
spanning trees

Jayadev Misra
May 12, 2020

Abstract

We present a theorem that underlies all algorithms for minimum span-
ning tree construction.

Keywords: Graph algorithms, minimum spanning tree, safe edge.

1 Background

A spanning tree of a connected undirected graph is a subset of its edges
that forms a tree over the nodes of the graph. Given real-valued edge
lengths, possibly negative, the length of a spanning tree is the sum of its
edge lengths. A spanning tree of minimum length is called a minimum
spanning tree, henceforth abbreviated as mst.

Safe edge A given set of edges M partition the nodes of a graph into
connected components, where two nodes are in the same component iff
there is a path between them that uses only the edges from M. Edge z—y,
where x and y belong to distinct components X and Y respectively, is an
inter-component edge with respect to M. Edge x—vy is safe for X wrt M
if it is a shortest inter-component edge incident on X. Write X SuY to
denote that edge e is incident on nodes in components X and Y, and e is
safe for X under the partition induced by M; we drop the subscript M
when it is clear from the context. Note that e may not be safe for Y. A
component may have several safe edges, and they are of equal length by
definition. Call edge e safe wrt (with respect to) M if X Sy Y for some
component X.

Notation |e| is the length of edge e and |M| the sum of lengths of the
edges in M. O
The following lemma proves an independence result among safe edges.

Lemma 1 Let edges e and f of distinct lengths be safe wrt M. Then f
is safe wrt M U {e}.

Proof: Suppose X S Y. In M U {e} components X and Y are merged
to form a single component, call it XY. Suppose f is safe for component
Z. Consider the following cases for Z.

e Z ¢ {X,Y}: The components wrt M U{e} and M are the same except
that X and Y are combined to form a component in the former case. So,
Z and its inter-component edges are unaffected wrt M U{e}, so f is a safe
edge for Z wrt M U {e}.

e Z/ = X: Both e and f are safe for X, so they have the same length,
contradicting that e and f have distinct lengths.

e Z =Y: If fisincident on X then both e and f are incident on both X
and Y. Since e is safe for X, |e| < |f], and f safe for Y implies | f]| < |e],
contradiction.

Therefore, f is incident on Y and a component other than X. So, f is
an inter-component edge of XY. We show that f is safe for component
XY. Write IE(X) and IE(Y) for the inter-component edges of X and Y,
respectively, wrt M, and IE(XY) for the inter-component edges of XY
wrt M U{e}. Then IE(XY) CIE(X)UIE(Y).

true
= {e and f are safe for X and Y, respectively}

lel <min{|f]] f € IE(X)} A |f] < min{|f]| f € IE(Y)}
= {eis incident on Y and f safe for Y. So, |f| < |e|}

I/ < min{|f]] £ € IE(X)} A [f] < min{|f]] f € IE(Y)}
= {IE(XY)CIE(X)UIE(Y)}

IfI < min{| f|| f € IE(XY)}
= {f is an inter-component edge of XY}

f is safe for XY a

2 A fundamental theorem of minimum
spanning tree

Theorem 1 Let M be a subset of some mst and E a set of safe edges
of distinct lengths. Then M U E is a subset of some mst.

Proof: The proof is by induction on the size of F.
e [/is empty: M UFE = M is a subset of some mst.

e I has exactly one element e: Suppose M is a subset of mst M'. If
e € M', then M U {e} C M’, so the proof is complete. Next, suppose
e & M’ and e is a safe edge for component X. A property of a spanning
tree is that M’ U {e} has a cycle. This cycle includes another edge f
where f € M’, and f is incident on X. Then M" = (M — {f})U{e} is a
spanning tree. We show that M” is a mst because |[M"| < |M’|.

Since e is a safe edge for X and f an inter-component edge of X,
lel < IfI. So, [M"] = M| =[]+ el < |M’].

e FE has more than one element: Let e € E. Then M U {e} is a subset of
some mst, from the case proved above. From Lemma 1 (page 1), all edges
of E—{e} are safe wrt M U{e}. Inductively, (MU{e})U(E—{e}) = MUE
is a subset of some mst. a

On distinct edge lengths Theorem 1 requires that all edge lengths
in E be distinct. To see the necessity of this condition consider a graph
of 3 nodes that are pair-wise connected by edges of equal length. Given
that each node is a component, each edge is safe. If E includes all the
edges, the constructed mst has a cycle. The requirement of distinct edge
lengths in E avoids this scenario.

The condition of distinct edge lengths is clearly met if F is a single-
ton. This is the property exploited in Kruskal’s algorithm in Section 3.1
(page 3) and Dijkstra-Prim algorithm in Section 3.2 (page 4). Bortuvka’s
algorithm, Section 3.3, is applied on graphs in which all edge lengths are
distinct; so, the condition of the theorem is trivially met.

3 Algorithms for mst

The abstract algorithm, below, works as follows. Start with an empty set
for M which is a subset any mst. Then every node is a component and
all edges are inter-component. Identify the safe edges incident on each
node, pick some subset E of these edges that have distinct lengths and
add them to M. Repeat this step until M is a spanning tree; then M is
guaranteed to be a mst from the fundamental theorem.

Abstract algorithm for minimum spanning tree

M :={};
while M is not a spanning tree do
{@M': M’ isamst: M C M)}
choose FE to be a set of safe edges of distinct lengths;
M:=MUEFE
{3M': M'isamst: M C M)}
enddo
{(3M': M'isamst: M C M), M is a spanning tree }
{ M is a mst }

The abstract algorithm permits a number of choices for . This allows
for the development of a family of programs. Performance of different
programs depend on the data structures and algorithms they employ for
computing a set of safe edges of distinct lengths.

3.1 Kruskal’s algorithm

Kruskal’s algorithm [2] starts with an empty set for M. It scans the edges
in order of increasing lengths where edges of equal length are scanned in
arbitrary order. For each scanned edge e if e is safe, it is added to M,
otherwise it is discarded from further consideration. This strategy meets
the requirement of Theorem 1 (page 2) because any edge that is added is
safe, and it has distinct length by itself. The steps continue until M is a
spanning tree.

3.2 Dijkstra-Prim algorithm

This algorithm was discovered independently by Dijkstra [1] and Prim [3].
At all points during the algorithm there is a primary component (let us
call it prim; the coincidence in naming is entirely intended) that may
consist of one or more nodes, and remaining components that have exactly
one node each. Initially every node is a component by itself, and one of
the components is chosen arbitrarily as the primary component. At all
points M is a mst over the nodes of the primary component. In each step
a shortest inter-component edge incident on prim is added to M until
M has n — 1 edges. The correctness of the algorithm is immediate from
Theorem 1 (page 2).

3.3 Boruvka’s algorithm

Perhaps the first mst algorithm was designed by Boruvka in 1926. The
algorithm has been discovered and rediscovered several times. The al-
gorithm is applied on graphs in which edge lengths are all distinct. It
chooses E to include all safe edges in each step. It is a greedy algorithm
in the sense that it does all that is possible in a step.

Every step reduces the number of components by at least half, usually
more, so the number of steps is bounded by log, n. Each step, of course,
takes longer than joining just two components.

The algorithm permits efficient parallel implementation. Large graphs
can be processed by multiple computers simultaneously because it is suffi-
cient to find a safe edge of a component independent of other components.
This parallel version of the algorithm was popularized by Sollin [4].

References

[1] E.W. Dijkstra. A note on two problems in connection with graphs.
Numerische Mathematik, 1:83-89, 1959.

[2] Joseph. B. Kruskal. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the American
Mathematical Soctety, 7(1):48-50, Feb 1956.

[3] R. C. Prim. Shortest connection networks and some generalizations.
Bell System Technical Journal, 36(6):1389-1401, November 1957.

[4] Georges Sollin. ”le trac de canalisation”. Programming, Games, and
Transportation Networks, 1965.

