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This talk isnotabout:

• A survey of the concurrency literature.

• Efficient algorithms for multicore computing.

• Proofs of protocols.
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This talk is about:

• My view of asynchronous concurrency.

• How my views have shaped my research (with subtle commercials).

• Why the entire area needs significant new research.
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Traditional view of concurrency in the 70s, early 80s

• add-on to traditional sequential programming,

• handled by enumerating threads:
device controller, background monitor, timer, ...

• threads can fork to create new threads (not too many), interrupt others, ...

• fork, join paradigm for structuring.
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Relevant questions Then

• How many machines?

• Topology of connection?

• Synchronization mechanism:
Semaphore, Conditional critical region, Monitor, ...?

• Communication mechanism:
Shared memory/message passing/broadcast interaction?

• Latency and bandwidths compared to in-memory interactions?
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Reasoning methods

• Mostly ad-hoc.

• Enumeration of scenarios.

• Assertions at/before/after program control points.

• Interesting properties:
Mutual exclusion, absence of deadlock, starvation, ...
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Some powerful ideas from the 80s

• Process calculi: CSP, CCS:
structured enumeration of threads.

• Reasoning method of Owicki and Gries,
using thread non-interference.

• Classification of program properties:
Safety, progress

• Temporal logic.
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CSP, 1978

• Process network with message passing.
Shared memory regarded as a process.

• Rendezvous-based synchronization and communication.

• Simultaneous waiting on multiple channels.

• Process spawning.

Concurrency questions can be cast in completely machine-independent form.

8



Simulation of a Telephone switch

• Multiple processors in the switch.

• Multiple customer devices: handsets, fax machines, local switches.

• Multiple calls.

Possible partitioning into processes along many dimensions, none attractive.
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Alternate view of structuring

A common misconception in program structuring is that aprocess

—whose code can be executed on a single processor, or which can be

viewed as a unit of computation, as in a transaction processing

system, for instance— constitutes a “natural” decomposition of a

system; therefore, it is argued that a system should be understood

(i.e., specified) process by process.

Parallel Program Design: A Foundation(1988)
K. Mani Chandy, J. Misra
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Pamela Zave’s view of Networking
CLASSIC LAYERS

OR OSI

REFERENCE MODEL

there is a fixed number of layers

each layer has a distinct and
indispensable function

THE GEOMORPHIC VIEW OF

NETWORKING

each layer is a microcosm of networking,
containing all the basic functions (state
components and mechanisms)

there can be any number of levels, each with
any number of layers

the layers are modules, providing orderly,
fine-grained separation of concerns
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Unity

Goals:

• Structure a solution so that it admits:
multiple views of problem decomposition.

• Structure a solution so that it admits:
implementations on multiple platforms.

• Strong reasoning methods for safety and progress properties.

• Strong reasoning methods about program composition.

12



Common Meeting Time

• A set of students each with a personal calendar functionf :

f (t) is the next time at/aftert when the student can meet.

• Find the earliest common meeting time, if one exists.
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Some solutions

• Passing around a scratch pad.

• Bidding.

• Recursive decomposition.
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An abstract solution

• initially t = 0 −− earliest common meeting time≥ t

t := f0(t) [] t := f1(t) [] · · · [] t := fn(t)

• Execute the actions in arbitrary order forever.

Execute each action infinitely often.

• There is a common meeting time: eventually t set to the earliest.
No action has any effect thereafter; so,t does not change.

• There is no common meeting time: t keeps increasing.

• Previous solutions are restrictions of this program.
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Unity

• Discard the notion of a process.

• Replace concurrency by non-determinacy.
Each indivisible unit of computation in any thread is an action.

• Reason about infinite sequences of actions using Unity logic,
a form of linear temporal logic.

• An implementation will restrict non-determinacy.

• Any restriction that isfair retains all properties of the original program.
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Structuring is manual

• Partition the set of actions into processes.
Partitioning of variables across process boundaries.
Shared variables.

• Hierarchies of partitioning.

• Point-point channel: variable withputs and gets.

• Broadcast channel:get does not remove the item from the channel.
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Reasoning

• Safety: Invariant-based; induction on the number of execution steps.

• Progress (liveness): Induction on elementary proof steps.

• Reasoning about composite programs: Modular proofs.

• Properties, not code, of components used in the proof.

• Safety properties completely handled.

• Progress properties almost completely handled.
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Unity is applicable:

• Event processing is the primary function.

• In process control (telephony, train controllers ...)

• Mars Rover software: A fixed set of threads.
Each thread is in an infinite loop:
Receives a message.
Processes the message; may send messages.
Accepts the next message only on completion of processing.
Each processing step guaranteed to terminate.

• Event-B

• TLA+

• Admits simpler model checking: UV, Murphi

Disclaimer: Unity may not have inspired any of this work.
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Structured Programming

• Structured Programming:

Structured programming circa 1968 (Dijkstra)

= Component integration in a sequential world.

• Structured Programming:

Structured programming circa 2014

= Component integration in a concurrent world.
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Concurrency is fundamental

• As fundamental as sequencing, branching and looping.

• Dynamic thread creation essential:
Reasoning about individual threads is not scalable.

• A spectrum of synchronization and communication:
from tightly-coupled OS processes to loosely-coupled applications.

• Separation of logical and physical across vast magnitude:
mobility, names and domains, connections, ...
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How to structure large concurrent programs

• Extremely simple structuring mechanism in UNITY.

• Consequently, UNITY inadequate for complex problems.

• More elaborate structuring in CSP, CCS,π-calculus.
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Orc: a component integration system

Components:

• from many vendors,

• for many platforms,

• written in many languages,

• may run in real-time.

Integration: Sequential and/or concurrent executions of components.
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Component Integration; contd.

• Data types and Structures: Boolean, List, Relational database, Objects

• Small components: add two numbers, print a file ...

• Large components: Linux, email server, a simulator, Web services ...

• Time-based components: clock, alarm, stopwatch, ...

• Cyberphysical devices: actuators, sensors, robots ...

• Fast and Slow components

• Short-lived and Long-lived components

• Humans
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OrcCalculus

• Site: Basic component.External to the calculus.

• Combinatorsfor integrating expressions.

Interleaving: f | g
Spawning/sequencing: f >x> g
Interruption: f <x< g
Bulk Synchronization: f ; g

• Definitionsof sites in Orc.
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Orc Calculus

• Calculus includes nothing other than the combinators and definitions.

• No data type, thread, process, channel, rendezvous· · ·

• New concepts are programmed in Orc using sites.

• No mutable store in the calculus.
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Sites

• A site is called like a procedure with parameters.

• Site returns (publishes) any number of values at different times.

• A time-based site publishes at specific real time.
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Examples of Sites
• Constants: 3, 7.2, true, "Orc" ...

• Arithmetic, logical operators: + − ∗ && || = ...

• Data structures: tuple, record, list, set, ...

• Mutable actions: Println, Random, Prompt, Email ...

• Instances of shared variables: Ref, Semaphore, Channel, ...

• Timer

• External Services:Google Search, MySpace, CNN, Web services...

• Any Java Class instance, Any Orc Program

• Factory sites; Sites that create sites: Semaphore, Channel ...

• Humans... (Not a factory site, yet.)
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Interleaving, Spawning

• Do f andg in parallel f | g

Evaluatef andg independently. Publish all values from both.

• For all x from f do g f >x> g

For all values published byf do g. Publish only the values fromg.

Notation: f ≫ g for f >x> g, if x is unused ing.

Right Associative: f >x> g >y> h is f >x> (g >y> h)
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Schematic of Sequential composition

Figure:Schematic off >x> g

30



Subset Sum

Given integern and list of integersxs.

parsum(n, xs) publishes all sublists ofxs that sum ton.

parsum(5,[1,2,1,2]) = [1,2,2], [2,1,2]

parsum(5,[1,2,1]) is silent.

All examples shown in this talk are irrelevant in practice.
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An Orc program for Subset Sum

def parsum(0, [ ]) = [ ]

def parsum(n, [ ]) = stop

def parsum(n, x : xs) =

parsum(n, xs) −− all sublists that do not includex

| parsum(n − x, xs) >ys> x : ys −− all sublists that includex
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Interleaving, Spawning, Bulk Synchrony

Do f andg in parallel f | g

Evaluatef andg independently. Publish all values from both.

For all x from f do g f >x> g

For all values published byf do g. Publish only the values fromg.

• Do f . If f halts without publishing dog. f ; g
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Subset Sum (Contd.), Backtracking

Given integern and list of integersxs.

seqsum(n, xs) publishes thefirst sublist of xs that sums ton.

“First” is smallest by index, lexicographically.

seqsum(5,[1,2,1,2]) = [1,2,2]

seqsum(5,[1,2,1]) is silent.
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Program for Subset Sum, Backtracking

def seqsum(0, [ ]) = [ ]

def seqsum(n, [ ]) = stop

def seqsum(n, x : xs) =

x : seqsum(n − x, xs)

; seqsum(n, xs)
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Interleaving, Spawning, Bulk Synchrony, Pruning

Do f andg in parallel f | g

Evaluatef andg independently. Publish all values from both.

For all x from f do g f >x> g

For all values published byf do g. Publish only the values fromg.

Do f . If f halts without publishing dog. f ; g

• For somex from g do f f <x< g

36



Pruning: f <x< g

For some value published byg do f .

• Evaluate f and g in parallel.

• Site calls that needx are suspended.

• When g returns a (first) value:

• Bind the value tox.
• Kill g.
• Resume suspended calls.

• Values published byf are the values of(f <x< g).

Notation: f ≪ g for f <x< g, if x is unused inf .

Left Associative: f <x< g <y< h is (f <x< g) <y< h
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Subset Sum (Contd.), Concurrent Backtracking

Publish thefirst sublist of xs that sums ton.

Run the searches concurrently.

def parseqsum(0, [ ]) = [ ]

def parseqsum(n, [ ]) = stop

def parseqsum(n, x : xs) =
(p ; q)

<p< x : parseqsum(n − x, xs)
<q< parseqsum(n, xs)

Note: Neither search in the last clause may succeed.

38



Subset Sum (Contd.), Concurrent Backtracking

Publish thefirst sublist of xs that sums ton.

Run the searches concurrently.

def parseqsum(0, [ ]) = [ ]

def parseqsum(n, [ ]) = stop

def parseqsum(n, x : xs) =
(p ; q)

<p< x : parseqsum(n − x, xs)
<q< parseqsum(n, xs)

Note: Neither search in the last clause may succeed.

38



Angelic + Demonic non-determinism

Programs to solve combinatorial search problems may often be simply

written by using multiple-valued functions. Such programs, although

impossible to execute directly on conventional computers,may be

converted in a mechanical way into conventional backtracking programs.

– R.W. Floyd, 1968

• f >x> g −− Angelic: Explore all paths

• f <x< g −− Demonic: Explore some path, prune others.

• Any combination of these.
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On Evaluating Programming Theories

• (Easier) Establish properties of the theory: Introspection

• Internal consistency, through a semantics
• Basic Identities
• Proof theory

• (Harder) Establish applicability of the theory: Extrospection

• Encode accepted programming paradigms
• Explore limitations
• Validate intentions empirically
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Identities of | , ≫ , ≪ and ;

(Zero and | ) f | stop = f
(Commutativity of | ) f | g = g | f
(Associativity of | ) (f | g) | h = f | (g | h)
(Left zero of ≫ ) stop ≫ f = stop
(Associativity of ≫ ) if h is x-free

(f >x> g) >y> h = f >x> (g >y> h)
(Right zero of ≪ ) f ≪ stop = f
(generalization of right zero)

f ≪ g = f ≪ (stop ≪ g) = f | (stop ≪ g)
(relation between ≪ and <x< )

f ≪ g = f <x< g, if x 6∈ free(f ).
(commutativity) (f <x< g) <y< h = (f <y< h) <x< g

if x 6∈ free(h), y 6∈ free(g), and x, y are distinct.
(associativity of ; ) (f ; g) ; h = f ; (g ; h)
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Distributivity Identities

( | over >x> ; left distributivity)
(f | g) >x> h = f >x> h | g >x> h

( | over <x< ) (f | g) <x< h = (f <x< h) | g, if x 6∈ free(g).

( >y> over <x< ) (f >y> g) <x< h = (f <x< h) >y> g
if x 6∈ free(g), and x and y are distinct.

( <x< over ; ) (f <x< g) ; h = (f ; h) <x< g, if x 6∈ free(h).
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Identities that don’t hold

(Idempotence of | ) f | f = f

(Right zero of ≫ ) f ≫ stop = stop

(Left Distributivity of ≫ over | )
f ≫ (g | h) = (f ≫ g) | (f ≫ h)
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Baby steps towards a Proof Theory

Example: Commutative, associative fold+ on a set

def fold(S, n) = −− set S has n elements.

−− f (k) folds and reduces set size byk.

def f (0) = stop

def f (1) = (S.get(), S.get()) >(x, y)> S.put(x + y) ≫ stop

def f (k) = f (1) | f (k − 1)

f (n − 1)

Surprisingly: Unity proof theory seems appropriate.
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I will show some programming paradigms encoded in Orc

• Implicit concurrency

• Synchronization

• Process network

• Real time

• Virtual time
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Orc Language

• Data Types: Number, Boolean, String, with Java operators

• Data structures: Tuple, List, Record

• Pattern Matching; Clausal Definition

• Closure

• Class; active objects

All features implemented as macros and/or calls to library sites.
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Site arguments are concurrently evaluated

• f (g, h) is translated to:

• (f (x, y) <x< g)
<y< h

• From semantics of ≪ , g and h concurrently evaluated.
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Implicit Concurrency

• An experimenttosses two dice;successif sum of throws is 7.

• exp(n) runs n experiments and reports the number of successes.

def toss() = Random(6) + 1
−− toss returns a random number between 1 and 6.

def exp(0) = 0

def exp(n) = exp(n − 1)
+ (if toss() + toss() = 7 then 1 else 0)

Number of concurrent calls totoss = ?
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Synchronization: Pure Rendezvous

val s = Semaphore(0) −− s is a sempahore with initial value 0.
val t = Semaphore(0)

def put() = s.acquire() ≫ t.release()
def get() = s.release() ≫ t.acquire()
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Typical Iterative Process

Forever: Read x from channelc, compute withx, output result one:

def p(c, e) = c.get() >x> Compute(x) >y> e.put(y) ≫ p(c, e)

c e

p(c,e)

Compute

Figure:Iterative Process
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Composing Processes into a Network

Process (network) to read from bothc and d and write one:

def net(c, d, e) = p(c, e) | p(d, e)

c

d

e

p(c,e)

p(d,e)

net(c,d,e)

Figure:Network of Iterative Processes
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Workload Balancing
Read fromc, assign work randomly to one of the processes.

def bal(c, c′, d′) = c.get() >x> random(2) >t>
(if t = 0 then c′.put(x) else d′.put(x)) ≫

bal(c, c′, d′)

def workbal(c, e) = val c′ = Channel()
val d′ = Channel()
bal(c, c′, d′) | net(c′, d′, e)

c’

d’

e

p(c’,e)

c

p(d’,e)

 bal

workBal(c,e)
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Recursive Pipeline network
Consider computing factorial of each input.

fac(x) =

{
1 if x = 0
x × fac(x − 1) if x > 0

Supposex ≤ N, for some givenN.

Fac_(N−1)

in out

in’ out’

front

Fac_(N)
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Real time: Metronome
External siteRwait(t) returns a signal aftert time units.
metronome publishes asignal every time unit.

def metronome() = signal
︸ ︷︷ ︸

S

| ( Rwait(1) ≫ metronome()
︸ ︷︷ ︸

R

)

S R

S R
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Parallel Auction

• A list of bidders in a single-round auction.

• Ask for bids from all bidders, then publish the highest bid.

• b.ask() requests a bid from bidderb.
All bidders called simultaneously.

• Bid is 0 if no response from a bidder within 8 seconds.

def auction([ ]) = 0

def auction(b : bs) =
max( −− both arguments run in parallel

b.ask() | (Rwait(8000) ≫ 0), −− timeout alternative
auction(bs)

)
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The Subtle Commercial

• Orc web site:
http://orc.csres.utexas.edu/

• Reference manual, user guide and research papers.

• Web site at which Orc programs can be submitted.

• Download Orc to your computer.

• Student Projects.
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The Subtle Commercial; contd.

• All known synchronization communication protocols coded in Orc.

• Several student projects covering different application areas:
Twitter search, Music composition, Trip manager, Workflow.

• Current work in Robotics, two robots patrolling a perimeter.
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Shortest Path Algorithm with Lights and Mirrors

• Source node sends rays of light to each neighbor.

• Edge weight is the time for the ray to traverse the edge.

• When a node receives its first ray, sends rays to all neighbors.
Ignores subsequent rays.

• Shortest path length= time for sink to receive its first ray.
Shortest path length to nodei = time for i to receive its first ray.
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Graph structure inSucc()

u

x y z

2 1 5

Figure:Graph Structure

Succ(u) publishes(x, 2), (y, 1), (z, 5).
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Algorithm

def eval(u, t) = record valuet for u ≫

for every successorv with d = length of (u, v) :
wait for d time units ≫

eval(v, t + d)

Goal : eval(source, 0) |
read the value recorded for thesink

Record path lengths for nodeu in FIFO channelu.
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Algorithm(contd.)
def eval(u, t) = record valuet for u ≫

for every successorv with d = length of (u, v) :
wait for d time units ≫

eval(v, t + d)

Goal : eval(source, 0) |
read the value recorded for thesink

———————————-
A cell for each node where the shortest path length is stored.

def eval(u, t) = u := t ≫

Succ(u) >(v, d)>
Rwait(d) ≫

eval(v, t + d)

{- Goal :-} eval(source, 0) | readsink
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Algorithm(contd.)

def eval(u, t) = u := t ≫

Succ(u) >(v, d)>
Rwait(d) ≫

eval(v, t + d)

{- Goal :-} eval(source, 0) | readsink

• Any call to eval(u, t): Length of a path from source tou is t.

• First call to eval(u, t): Length of the shortest path from source tou is t.

• eval does not publish.
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Drawbacks of this algorithm

• Running time proportional to shortest path length.

• Executions ofSucc, put and get should take no time.
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Simulation: Bank

• Bank with two tellers and one queue for customers.

• Customers generated by asource process.

• When free, a teller serves the first customer in the queue.

• Service times vary for customers.

• Determine

• Average wait time for a customer.
• Queue length distribution.
• Average idle time for a teller.
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Description of Bank

def Bank() = (Customers() | Teller() | Teller()) ≫ stop

def Customers() = Source() >c> enter(c)

def Teller() = next() >c>
Vwait(c.ServTime) ≫

Teller()

def enter(c) = q.put(c)
def next() = q.get()
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A Significant research area:Programming

• Obliterate the distinction between programming and concurrent
programming.

• Structuring is fundamental.

• Orc suggests one mechanism, orchestration of components.

• Components should be coded in the most efficient way, perhapsin other
languages.

• Intrinsic merit of concurrency as a field of study, apart fromits
applications in
Robotics, Mobile computing, smart city management, ...
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Role of universities in the age of MOOCS:
Where I can get diverse expertise.

• at UT,
• Lorenzo Alvisi
• Don Batory
• William Cook
• Isil Dillig
• Tom Dillig
• Allen Emerson
• Mohamed Gouda
• Warren Hunt
• Matt Kaufmann
• Simon S. Lam
• Vladimir Lifschitz
• Calvin Lin
• J Moore
• Keshav Pingali
• Peter Stone
• David Zuckerman
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