A Problem due to J Moore Jayadev Misra

5/22/2025, supersedes a note of 3/28/01

1 The Problem

The following problem was posed by J Moore during the faculty lunch on March 28, 2001. This note supersedes a note I wrote on that day.

There are two machines $-\alpha$ and β - with two registers each. Each machine can read/write a shared counter. Initially the counter holds the value 1 and all registers are empty, i.e. have a value of 0. There are two atomic actions (steps):

- 1. (read) Any machine may read the counter value into one of its empty registers (and then the register becomes nonempty).
- 2. (write) A machine may write the sum of its register values into the counter and then empty both registers.

Moore asked for the set of counter values that can be generated. I show two different schedules to generate all possible integers.

2 Schedules

The state of the system is a triple $\langle a, b, c \rangle$, where

a is the set of register values of α b is the set of register values of β

c is the value in the counter.

The initial state is $\langle \{\}, \{\}, 1 \rangle$. In a proof, $\langle a, b, c \rangle \rightarrow \{step\} \langle a', b', c' \rangle$ denotes that the atomic action (explained in step) causes the transition from state $\langle a, b, c \rangle$ to $\langle a', b', c' \rangle$. The symbols $\stackrel{*}{\rightarrow}$ and $\stackrel{**}{\rightarrow}$, in place of \rightarrow , denote, respectively, a bounded number of steps, i.e. in $\mathcal{O}(1)$ steps, and a finite number of steps, not necessarily bounded.

Lemma 1

1.
$$\langle \{\}, \{1\}, k \rangle \rangle \stackrel{*}{\longrightarrow} \langle \{\}, \{1\}, k+1 \rangle$$
.

$$2. \ \langle \{\}, \{1\}, k \rangle \quad \stackrel{*}{\rightarrow} \quad \langle \{\}, \{1\}, 2k \rangle.$$

Proof:

1.
$$\langle \{\}, \{1\}, k \rangle$$

 $\rightarrow \{\alpha \text{ reads}\}$
 $\langle \{k\}, \{1\}, k \rangle$
 $\rightarrow \{\beta \text{ writes}\}$

$$\langle \{k\}, \{\}, 1 \rangle$$

$$\rightarrow \{\alpha \text{ reads}\}$$

$$\langle \{k, 1\}, \{\}, 1 \rangle$$

$$\rightarrow \{\beta \text{ reads}\}$$

$$\langle \{k, 1\}, \{1\}, 1 \rangle$$

$$\rightarrow \{\alpha \text{ writes}\}$$

$$\langle \{\}, \{1\}, k + 1 \rangle$$

$$2. \qquad \langle \{\}, \{1\}, k \rangle$$

$$\rightarrow \{\alpha \text{ reads}\}$$

$$\langle \{k\}, \{1\}, k \rangle$$

$$\rightarrow \{\alpha \text{ reads}\}$$

$$\langle \{k, k\}, \{1\}, k \rangle$$

$$\rightarrow \{\alpha \text{ writes}\}$$

$$\langle \{\}, \{1\}, 2k \rangle$$

Next, I show that (1) all positive integers up to n can be enumerated in $\mathcal{O}(n)$ steps, and (2) a specific n in $\mathcal{O}(\log n)$ steps.

Theorem 1

- 1. $\langle \{\}, \{\}, 1 \rangle \stackrel{**}{\to} \langle \{\}, \{\}, k$, for all $k, k \leq n$, in $\mathcal{O}(n)$ steps.
- 2. $\langle \{\}, \{\}, 1 \rangle \stackrel{**}{\rightarrow} \langle \{\}, \{\}, n, \text{ in } \mathcal{O}(\log n) \text{ steps.}$

Proof: The proof is by induction on n.

Base Case, n = 1: I show that $\{\{\}, \{1\}, 1\}$ is reachable in $\mathcal{O}(1)$ steps.

$$\begin{array}{c} \langle \{\}, \{\}, 1 \rangle \\ \rightarrow \; \{\beta \; \mathrm{reads} \} \\ \langle \{\}, \{1\}, 1 \rangle \end{array}$$

- 1. Follows directly from Lemma 1 part(1).
- 2. I show the result for even and odd values of n separately.

Case n = 2k, for some k, k > 0: Inductively, $\langle \{\}, \{1\}, k \rangle$ is reachable in $\mathcal{O}(\log k)$ steps. From Lemma 1 part(2),

$$\langle \{\}, \{1\}, k \rangle \xrightarrow{*} \langle \{\}, \{1\}, 2k \rangle$$
. Therefore,

$$\{\{\}, \{1\}, 2k\}$$
 is reachable in $\mathcal{O}(\log k) = \mathcal{O}(\log n)$ steps.

Case n = 2k+1, for some k, k > 0: Inductively, $\langle \{\}, \{1\}, 2k \rangle$ is reachable in $\mathcal{O}(\log k)$ steps. From Lemma 1 part(1),

$$\langle \{\}, \{1\}, 2k \rangle \stackrel{*}{\rightarrow} \langle \{\}, \{1\}, 2k+1 \rangle$$
. Therefore,

$$\langle \{\}, \{1\}, 2k+1 \rangle$$
 is reachable in $\mathcal{O}(\log k) = \mathcal{O}(\log n)$ steps.