
Proof of an Abstract Algorithm for Graph

Reachability

Jayadev Misra

May 7, 2019

Abstract

We present an abstract non-deterministic algorithm for identifying
nodes of a directed graph that are reachable from a specific node. The
algorithm encompasses all known algorithms for this problem, including
breadth-first and depth-first search. Its correctness, therefore, implies
that all such algorithms are correct.

Keywords: Graph algorithms, reachability in graphs, breadth-first search,
depth-first search, proof of algorithms.

1 Reachability in graphs

We consider the classic problem of reachability in a graph. Given is a finite
directed graph with a designated root node. It is required to identify all
nodes that are reachable via a directed path from root.

There are many well-known algorithms for this problem, including
breadth-first and depth-first search. The goal of this paper is to design and
prove an algorithm that includes the known algorithms as special cases.
The proposed algorithm is non-deterministic. We obtain different specific
algorithms by limiting the non-deterministic options in its execution. In
particular, we employ a set vroot in our algorithm to which nodes are
added and from which nodes are deleted during execution. We do not
specify the data structure for vroot. Implementing vroot as a queue, so
that additions and deletions are performed at different ends of the list,
yields the breadth-first search algorithm, whereas implementing vroot as
a stack yields depth-first search.

We give a concise proof of correctness, which is not obvious. We also
show a more non-deterministic version of the algorithm.

Formal definitions We include the material below for completeness.
Convention: We introduce a number of functions, succ, Rn, R, from

nodes to sets of nodes. Extend the definitions so that each function has
a set of nodes as argument and the the function value is the union of the
results for individual nodes in the argument. That is, for S a set of nodes

1



and x a node, R(S) = (∪x : x ∈ S : R({x})). Therefore, for sets of nodes
S and T , R(S ∪ T ) = R(S) ∪R(T ), and if S ⊆ T then R(S) ⊆ R(T ).

For the given graph, succ({x}) is the set of nodes to which node x has
outgoing edges, R({x}) the set of nodes reachable from x and Ri({x}) the
set of nodes reachable from x via a path (not necessarily a simple path)
of length i, i ≥ 0.

Formal definitions of Ri and R are given below, where i is universally
quantified over naturals and x over nodes.

1. Ri({}) = {}.
2. R0({x}) = {x}.
3. Ri+1({x}) = succ(Ri({x})).
4. R({x}) = (∪n : n ≥ 0 : Rn({x})).

Properties of reachability relation R
The following properties of R can be proved. Below, x is a node and S

a set of nodes.

P1. R({}) = {}.
P2. R(S) = S ∪ succ(R(S)) = S ∪R(succ(S)).

P3. S ⊆ R(S) and succ(R(S)) ⊆ R(S), from (P2).

P4. R(R(S)) = R(S).

P5. (succ(S) ⊆ S) ≡ (S = R(S))

Properties P1 through P4 are proved easily from the definition. We
prove property P5.

First, prove (S = R(S))⇒ (succ(S) ⊆ S):

succ(S)
= {From the antecedent, S = R(S). Replace S by R(S).}

succ(R(S))
⊆ {from P2, succ(R(S)) ⊆ R(S)}

R(S)
= {antecedent}

S

Next, prove (succ(S) ⊆ S)⇒ (S = R(S)): From P3, S ⊆ R(S). So, it
suffices to prove (succ(S) ⊆ S) ⇒ (R(S) ⊆ S). We prove Rn(S) ⊆ S for
all n, n ≥ 0, so R(S) = (∪n : n ≥ 0 : Rn(S)) ⊆ S.

The proof of Rn(S) ⊆ S for all n is by induction on n. For n = 0,
R0(S) = S. Assume inductively that the result holds for some n, n ≥ 0.

Rn+1(S)
= {definition}

succ(Rn(S))
⊆ {Induction: Rn(S) ⊆ S}

succ(S)
⊆ {antecedent: succ(S) ⊆ S}

S

2



2 An abstract program for reachability

The strategy for computing the reachable nodes from root is to maintain
two sets of nodes, marked and vroot. The nodes in marked have already
been identified as being reachable from root. The nodes in vroot are anal-
ogous to root in that the remaining reachable nodes from root are those
reachable from some node in vroot; i.e., marked ∪ R(vroot) = R({root})
will be a property of the program.

Initially, marked is empty and vroot contains only root. In each step,
if vroot is non-empty, an arbitrary node x is chosen from vroot. if x is not
in marked it is added to marked and all its successors are added to vroot,
otherwise (x is in marked) x is removed from vroot. The program termi-
nates when vroot is empty. Then, from marked ∪ R(vroot) = R({root})
we get marked = R({root}), i.e., marked contains exactly the nodes
reachable from root.

The program is given below. Labels C1, C2, C3 and C4 have been
appended to commands to simplify subsequent explanation. Command
C4 is merely a skip. It has been added to streamline the proof.

{true}
C1:: marked, vroot := {}, {root} ;
while vroot 6= {} do

choose x from vroot ;
if x 6∈ marked then

C2:: marked, vroot := marked ∪ {x}, vroot ∪ succ({x})
else C3:: vroot := vroot− {x}
endif

enddo
{vroot = {}}
C4:: skip
{marked = R({root})}

Note: It is customary to remove x from vroot, in command C2, as soon
as its successors are added to vroot. We have not done so in order to get
a more non-deterministic program. If required, x may be removed in the
next step by executing C3 with the appropriate choice of x.

Usefulness of the Absract program The given program admits
of a number of possible implementations. In fact, an even more non-
deterministic program, given in Section 4, has even more options for im-
plementations. In the program here, suppose an execution of C2 with
some x is immediately followed by C3 to remove x from vroot. Now,
suppose vroot is implemented as a stack so that x is always chosen and
removed from the top and nodes in succ({x}) are added at the top. Then,
the program implements depth-first search. And, if vroot is implemented
as a queue so that x is always chosen and removed from the head and
nodes in succ({x}) are added at the tail, then the program implements
breadth-first search.

3



3 Correctness

3.1 Partial Correctness

Invariant A first choice for invariant I ismarked∪R(vroot) = R({root}).
This predicate holds initially. Additionally, when the loop terminates,
from vroot = {} conclude that marked = R({root}).

Unfortunately, marked∪R(vroot) = R({root}) can not be inductively
proved to be invariant. This is because for C3 it is not possible to show
that all nodes in R({x}) are still reachable from vroot after removing x
from vroot.

We propose invariant I to be a conjunction of four predicates.

{root} ⊆ marked ∪ vroot
∧ succ(marked) ⊆ marked ∪ vroot
∧ vroot ⊆ R({root})
∧ marked ⊆ R({root})

It is possible to prove that each conjunct is an invariant, in the given
order. We rewrite the invariant as follows and prove it formally.

I:: {root} ∪ succ(marked) ⊆ marked ∪ vroot ⊆ R({root})

Proofs of the Verification Conditions

C1. Setting marked to {} and vroot to {root} in I, we need to show
{root} ⊆ {root} ⊆ R({root}). The first inequality holds trivially,
and the second from property (P3) of reachable.

C2. Show
{root} ∪ succ(marked) ⊆ marked ∪ vroot ⊆ R({root})
∧ x ∈ vroot ∧ x 6∈ marked

⇒
{root}∪succ(marked∪{x}) ⊆ marked∪{x}∪vroot∪succ({x})
⊆ R({root}).

We prove the conclusion in two parts corresponding to the two in-
equalities.

1. {root}∪succ(marked∪{x}) ⊆ marked∪{x}∪vroot∪succ({x}):
{root} ∪ succ(marked ∪ {x})

⊆ {expand succ}
{root} ∪ succ(marked) ∪ succ({x})

⊆ {antecedent: {root} ∪ succ(marked) ⊆ marked ∪ vroot}
marked ∪ vroot ∪ succ({x})

⊆ {set theory}
marked ∪ {x} ∪ vroot ∪ succ({x})

2. marked ∪ {x} ∪ vroot ∪ succ({x}) ⊆ R({root}):
marked ∪ {x} ∪ vroot ∪ succ({x})

⊆ {Property P3: succ({x} ⊆ R(succ({x})}
marked ∪ vroot ∪ {x} ∪R(succ({x}))

= {Property P2: {x} ∪R(succ({x})) = R({x})}
marked ∪ vroot ∪R({x})

⊆ {antecedent: marked ∪ vroot ⊆ R({root}) }

4



R({root}) ∪R({x})
⊆ {{from x ∈ vroot, R({x}) ⊆ R(vroot)}

R({root}) ∪R(vroot)
⊆ {from vroot ⊆ R({root}), R(vroot) ⊆ R(R({root}))}

R({root}) ∪R(R({root}))
= {Property P4: R({root}) = R(R({root}))}

R({root})

C3. I is preserved because marked and marked ∪ vroot are unchanged
by C3, given x ∈ vroot ∧ x ∈ marked as precondition.

C4. The verification condition is

{root}∪succ(marked) ⊆ marked∪vroot ⊆ R({root})∧vroot = {}
⇒ marked = R({root}).

R({root})
⊆ {antecedent: {root} ⊆ marked. So, R({root}) ⊆ R(marked)}

R(marked)
= {from vroot = {}, succ(marked) ⊆ marked. Use Property P5}

marked
⊆ {antecedent: marked ⊆ R({root})}

R({root})

Therefore, R({root}) ⊆ marked ⊆ R({root}), somarked = R({root}).
Note: The reader may show that marked ∪ vroot = R({root}) follows
from invariant I.

3.2 Termination

Let unmarked be the set of reachable nodes from root that are not in
marked, i.e., unmarked = R({root}) − marked. Command C2 adds
node x to marked, effectively removing it from unmarked, thus reducing
the set unmarked; observe that x ∈ R({root}) from I. And, command C3
removes a marked node from vroot, thus preserving marked and, hence,
unmarked, while reducing vroot. Therefore, each iteration decreases the
metric (unmarked, vroot) lexicographically, where the sets are ordered
by subset ordering. Each set is finite, so this metric is well-founded,
guaranteeing termination of the algorithm.

4 Introducing Further Non-determinism

The given program has exactly one point of non-determinism, in choos-
ing a node from vroot. Its execution from then is deterministic. We
add further non-determinism as follows: choose any node x of the graph,
then choose the action to add x to marked or remove x from vroot. If
x 6∈ vroot or x ∈ marked and the “add” action has been chosen, do noth-
ing. Analaogously, if x 6∈ vroot or x 6∈ marked and the “remove” action
has been chosen, do nothing. Otherwise, do exactly as in the previous
program.

The following program is written in the style of UNITY from Chandy
and Misra[1]. A UNITY program has an initialization part followed by a

5



set of commands. The program execution starts in a state that satisfes
the initial condition. In each step an arbitrary command is chosen for
execution and the execution runs forever under the requirement that ev-
ery command be chosen eventually. Command execution in a step has no
effect if the chosen command’s guard is false, then the step is a stutter,
otherwise the command body is executed. A state in which further exe-
cution does not cause any change is called a fixed point ; the set of all fixed
points is denoted by the predicate FP . Program termination is equivalent
to reaching a fixed point. For the given program the correctness require-
ment is: (1) eventually a fixed point is reached, and (2) at any fixed point
marked = R({root}). It will still be necessary to prove an invariant so
that the invariant and FP imply the desired condition in (2).

The program executes the same actions as before interspersed, possi-
bly, with more stutter steps.

4.1 Program

{true}
U1:: initially marked, vroot = {}, {root}
(∀x : x a node in the graph :

U2:: x ∈ vroot ∧ x 6∈ marked →
marked, vroot := marked ∪ {x}, vroot ∪ succ({x})

[]U3:: x ∈ vroot ∧ x ∈ marked →
vroot := vroot− {x}

)
{marked = R({root})}

4.2 Correctness: Safety and Termination

Proof of partial correctness uses the same invariant I and is identical in
all respects to the proof of Section 3.1. Proof of progress that the program
eventually reaches a fixed point, is more involved because of the possibility
of infinite stutter.

The FP for this program, when both guards are false, is

(∀x : x a node in the graph :
¬(x ∈ vroot ∧ x 6∈ marked)

∧ ¬(x ∈ vroot ∧ x ∈ marked)
)

which simplifies to (∀x : x a node in the graph : x 6∈ vroot) or vroot = {}.
We show below that eventually vroot = {}. No more state changes

are posssible beyond that point, and as in Section 3.1, I ∧ vroot = {} ⇒
marked = R({root}).

UNITY Temporal Operators The following proof is written in
UNITY logic using the temporal operators en and 7→ that esatblish a
given predicate eventually. Here, “eventually” means after a finite num-
ber of steps, so the required predicate holds now or after one or more
steps. For a full treatment of UNITY logic see Chandy and Misra[1] and

6



Misra [2]. Here, we explain just enough to prove that a fixed point is
reached eventually.

For state predicates p and q, p en q asserts that (1) Safety: once
predicate p is true it will continue to hold until q holds, and (2) Progress:
eventually q is established by execution of some command. For (1) show
for every command α, {p ∧ ¬q} α {p ∨ q}. For (2) show some command
β for which {p ∧ ¬q} β {q} because β will be executed eventually and
establish q if it has not been true already.

Operator 7→ is a generalization of en where p 7→ q asserts that once
p is true q will eventually be true. For this paper, the only facts about 7→
that we need are: (1) if p en q then p 7→ q, (2) if p 7→ q and p′ 7→ q′ then
p ∨ p′ 7→ q ∨ q′, and (3) (induction) given a metric m and a well-founded
order ≺ over its domain, if for all possible values M in the domain of m
p ∧m = M 7→ m ≺M then true 7→ ¬p.

Proofs of Elementary Progress properties We sketch the proof
of two en properties informally because the details are easy to fill in.
Below, ≺ denotes lexicographic order over pairs of sets, i.e., (A,B) �
(A′, B′) means that A ⊆ A′ or A = A′ ∧B ⊆ B′, and (A,B) ≺ (A′, B′) is
(A,B) � (A′, B′) ∧ (A,B) 6= (A′, B′).

We show for every node x in the graph (where S and T are arbitrary
sets of nodes):

E1. (unmarked, vroot) = (S, T ) ∧ x ∈ vroot ∧ x 6∈ marked en
(unmarked, vroot) ≺ (S, T ):

Safety part for command U3 follows easily because the command
does not execute in the given state, so it preserves both predicates
in the property. The progress part for command U2 also implies the
safety part. The progress proof is identical to that in Section 3.2.

E2. (unmarked, vroot) = (S, T ) ∧ x ∈ vroot ∧ x ∈ marked en
(unmarked, vroot) ≺ (S, T ):

Safety part for command U2 follows because the command does
not execute in the given state, so it preserves both predicates in
the property. Execution of command U3 establishes unmarked =
S∧vroot ⊂ T because the command does not modify marked, hence
unmarked, and it reduces vroot by removing x from it.

7



Proof of Termination We show true 7→ FP ; since FP ≡ vroot = {},
we show true 7→ vroot = {}. Below, x is any node of the graph.

(unmarked, vroot) = (S, T ) ∧ x ∈ vroot ∧ x 6∈ marked
7→ (unmarked, vroot) ≺ (S, T ) ,from [E1]

(unmarked, vroot) = (S, T ) ∧ x ∈ vroot ∧ x ∈ marked
7→ (unmarked, vroot) ≺ (S, T ) ,from [E2]

(unmarked, vroot) = (S, T ) ∧ x ∈ vroot
7→ (unmarked, vroot) ≺ (S, T )

, disjunction of above two
(unmarked, vroot) = (S, T ) ∧ (∃x :: x ∈ vroot)

7→ (unmarked, vroot) ≺ (S, T )
, disjunction over all x

true 7→ ¬(∃x :: x ∈ vroot), induction
true 7→ vroot = {}, from ¬(∃x :: x ∈ vroot) ≡ vroot = {}

Acknowledgement Thanks to Leslie Lamport for discussions.

References

[1] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A
Foundation. Addison-Wesley, 1988.

[2] Jayadev Misra. A Discipline of Multiprogramming. Monographs in
Computer Science. Springer-Verlag New York Inc., New York, 2001.

8


