Proof of an Abstract Algorithm for Graph Reachability

Jayadev Misra

May 7, 2019

Abstract

We present an abstract non-deterministic algorithm for identifying nodes of a directed graph that are reachable from a specific node. The algorithm encompasses all known algorithms for this problem, including breadth-first and depth-first search. Its correctness, therefore, implies that all such algorithms are correct.

Keywords: Graph algorithms, reachability in graphs, breadth-first search, depth-first search, proof of algorithms.

1 Reachability in graphs

We consider the classic problem of reachability in a graph. Given is a finite directed graph with a designated root node. It is required to identify all nodes that are reachable via a directed path from root.

There are many well-known algorithms for this problem, including breadth-first and depth-first search. The goal of this paper is to design and prove an algorithm that includes the known algorithms as special cases. The proposed algorithm is non-deterministic. We obtain different specific algorithms by limiting the non-deterministic options in its execution. In particular, we employ a set \(v_{root} \) in our algorithm to which nodes are added and from which nodes are deleted during execution. We do not specify the data structure for \(v_{root} \). Implementing \(v_{root} \) as a queue, so that additions and deletions are performed at different ends of the list, yields the breadth-first search algorithm, whereas implementing \(v_{root} \) as a stack yields depth-first search.

We give a concise proof of correctness, which is not obvious. We also show a more non-deterministic version of the algorithm.

Formal definitions We include the material below for completeness.

Convention: We introduce a number of functions, \(\text{succ}, R_n, R \), from nodes to sets of nodes. Extend the definitions so that each function has a set of nodes as argument and the the function value is the union of the results for individual nodes in the argument. That is, for \(S \) a set of nodes

1
and \(x \) a node, \(R(S) = (\cup x : x \in S : R(\{x\})) \). Therefore, for sets of nodes \(S \) and \(T \), \(R(S \cup T) = R(S) \cup R(T) \), and if \(S \subseteq T \) then \(R(S) \subseteq R(T) \).

For the given graph, \(succ(\{x\}) \) is the set of nodes to which node \(x \) has outgoing edges, \(R(\{x\}) \) the set of nodes reachable from \(x \) and \(R_i(\{x\}) \) the set of nodes reachable from \(x \) via a path (not necessarily a simple path) of length \(i \), \(i \geq 0 \).

Formal definitions of \(R_i \) and \(R \) are given below, where \(i \) is universally quantified over naturals and \(x \) over nodes.

1. \(R_i(\{\}) = \{\} \).
2. \(R_0(\{x\}) = \{x\} \).
3. \(R_{i+1}(\{x\}) = succ(R_i(\{x\})) \).
4. \(R(\{x\}) = (\cup n : n \geq 0 : R_n(\{x\})) \).

Properties of reachability relation \(R \)
The following properties of \(R \) can be proved. Below, \(x \) is a node and \(S \) a set of nodes.

P1. \(R(\{\}) = \{\} \).

P2. \(R(S) = S \cup succ(R(S)) = S \cup R(succ(S)) \).

P3. \(S \subseteq R(S) \) and \(succ(R(S)) \subseteq R(S) \), from (P2).

P4. \(R(R(S)) = R(S) \).

P5. \((succ(S) \subseteq S) \equiv (S = R(S)) \)

Properties P1 through P4 are proved easily from the definition. We prove property P5.

First, prove \((S = R(S)) \Rightarrow (succ(S) \subseteq S)\):

\[
succ(S) = \{\text{From the antecedent, } S = R(S). \text{ Replace } S \text{ by } R(S).\}
\]
\[
succ(R(S)) \subseteq \{\text{from P2, } succ(R(S)) \subseteq R(S)\}
\]
\[
R(S) = \{\text{antecedent}\}
\]
\[
S
\]

Next, prove \((succ(S) \subseteq S) \Rightarrow (S = R(S))\): From P3, \(S \subseteq R(S) \). So, it suffices to prove \((succ(S) \subseteq S) \Rightarrow (R(S) \subseteq S) \). We prove \(R_n(S) \subseteq S \) for all \(n \), \(n \geq 0 \), so \(R(S) = (\cup n : n \geq 0 : R_n(S)) \subseteq S \).

The proof of \(R_n(S) \subseteq S \) for all \(n \) is by induction on \(n \). For \(n = 0 \), \(R_0(S) = S \). Assume inductively that the result holds for some \(n, n \geq 0 \).

\[
R_{n+1}(S) = \{\text{definition}\}
\]
\[
succ(R_n(S)) \subseteq \{\text{Induction: } R_n(S) \subseteq S\}
\]
\[
succ(S) \subseteq \{\text{antecedent: } succ(S) \subseteq S\}
\]

2
2 An abstract program for reachability

The strategy for computing the reachable nodes from root is to maintain two sets of nodes, marked and vroot. The nodes in marked have already been identified as being reachable from root. The nodes in vroot are analogous to root in that the remaining reachable nodes from root are those reachable from some node in vroot; i.e., marked ∪ R(vroot) = R({root}) will be a property of the program.

Initially, marked is empty and vroot contains only root. In each step, if vroot is non-empty, an arbitrary node x is chosen from vroot. If x is not in marked it is added to marked and all its successors are added to vroot, otherwise (x is in marked) x is removed from vroot. The program terminates when vroot is empty. Then, from marked ∪ R(vroot) = R({root}) we get marked = R({root}), i.e., marked contains exactly the nodes reachable from root.

The program is given below. Labels C1, C2, C3 and C4 have been appended to commands to simplify subsequent explanation. Command C4 is merely a skip. It has been added to streamline the proof.

{true}
C1:: marked, vroot := {}, {root};
while vroot ≠ {} do
 choose x from vroot;
 if x ∉ marked then
 C2:: marked, vroot := marked ∪ {x}, vroot ∪ succ({x})
 else C3:: vroot := vroot − {x}
 endif
endo
{vroot = {}}
C4:: skip
 {marked = R({root})}

Note: It is customary to remove x from vroot, in command C2, as soon as its successors are added to vroot. We have not done so in order to get a more non-deterministic program. If required, x may be removed in the next step by executing C3 with the appropriate choice of x.

Usefulness of the Abstract program The given program admits of a number of possible implementations. In fact, an even more non-deterministic program, given in Section 4, has even more options for implementations. In the program here, suppose an execution of C2 with some x is immediately followed by C3 to remove x from vroot. Now, suppose vroot is implemented as a stack so that x is always chosen and removed from the top and nodes in succ({x}) are added at the top. Then, the program implements depth-first search. And, if vroot is implemented as a queue so that x is always chosen and removed from the head and nodes in succ({x}) are added at the tail, then the program implements breadth-first search.
3 Correctness

3.1 Partial Correctness

Invariant A first choice for invariant I is $\text{marked} \cup R(vroot) = R(\{\text{root}\})$. This predicate holds initially. Additionally, when the loop terminates, from $vroot = \{}$ conclude that $\text{marked} = R(\{\text{root}\})$.

Unfortunately, $\text{marked} \cup R(vroot) = R(\{\text{root}\})$ cannot be inductively proved to be invariant. This is because for $C3$ it is not possible to show that all nodes in $R(\{x\})$ are still reachable from $vroot$ after removing x from $vroot$.

We propose invariant I to be a conjunction of four predicates.

\[
\begin{align*}
\{\text{root}\} &\subseteq \text{marked} \cup vroot \\
\land \text{succ}(\text{marked}) &\subseteq \text{marked} \cup vroot \\
\land vroot &\subseteq R(\{\text{root}\}) \\
\land \text{marked} &\subseteq R(\{\text{root}\})
\end{align*}
\]

It is possible to prove that each conjunct is an invariant, in the given order. We rewrite the invariant as follows and prove it formally.

\[
I:: \{\text{root}\} \cup \text{succ}(\text{marked}) \subseteq \text{marked} \cup vroot \subseteq R(\{\text{root}\})
\]

Proofs of the Verification Conditions

C1. Setting marked to $\{\}$ and $vroot$ to $\{\text{root}\}$ in I, we need to show

\[
\{\text{root}\} \subseteq \{\text{root}\} \subseteq R(\{\text{root}\}).
\]

The first inequality holds trivially, and the second from property (P3) of reachable.

C2. Show

\[
\begin{align*}
\{\text{root}\} \cup \text{succ}(\text{marked}) &\subseteq \text{marked} \cup vroot \subseteq R(\{\text{root}\}) \\
\land x \in vroot \land x \notin \text{marked} \\
\Rightarrow \\
\{\text{root}\} \cup \text{succ}(\text{marked}) \cup \{x\} &\subseteq \text{marked} \cup \{x\} \cup vroot \cup \text{succ}(\{x\}) \\
&\subseteq R(\{\text{root}\}).
\end{align*}
\]

We prove the conclusion in two parts corresponding to the two inequalities.

1. $\{\text{root}\} \cup \text{succ}(\text{marked}) \cup \{x\} \subseteq \text{marked} \cup \{x\} \cup vroot \cup \text{succ}(\{x\})$:

\[
\begin{align*}
\{\text{root}\} &\cup \text{succ}(\text{marked}) \cup \{x\} \\
\subseteq \{\text{expand succ}\} \\
\{\text{root}\} &\cup \text{succ}(\text{marked}) \cup \text{succ}(\{x\}) \\
\subseteq \{\text{antecedent: } \{\text{root}\} \cup \text{succ}(\text{marked}) \subseteq \text{marked} \cup vroot\} \cup \text{marked} \cup vroot \cup \text{succ}(\{x\}) \\
\subseteq \{\text{set theory}\} \\
\text{marked} &\cup \{x\} \cup vroot \cup \text{succ}(\{x\})
\end{align*}
\]

2. $\text{marked} \cup \{x\} \cup vroot \cup \text{succ}(\{x\}) \subseteq R(\{\text{root}\})$:

\[
\begin{align*}
\text{marked} &\cup \{x\} \cup vroot \cup \text{succ}(\{x\}) \\
\subseteq \{\text{Property P3: succ}(\{x\}) \subseteq R(\text{succ}(\{x\}))\} \\
\text{marked} &\cup vroot \cup \{x\} \cup R(\text{succ}(\{x\})) \\
= \{\text{Property P2: } \{x\} \cup R(\text{succ}(\{x\})) = R(\{x\})\} \\
\text{marked} &\cup vroot \cup R(\{x\}) \\
\subseteq \{\text{antecedent: } \text{marked} \cup vroot \subseteq R(\{\text{root}\})\}
\end{align*}
\]
\[
R\{\text{root}\} \cup R\{\text{x}\} \\
\subseteq \{\text{from } x \in \text{vroot}, R\{\text{x}\} \subseteq R\{\text{vroot}\}\}
\]
\[
\quad \quad R\{\text{root}\} \cup R\{\text{vroot}\} \\
\subseteq \{\text{from } \text{vroot} \subseteq R\{\text{root}\}, R\{\text{vroot}\} \subseteq R(R\{\text{root}\})\}
\]
\[
\quad \quad \quad \quad R\{\text{root}\} \cup R(R\{\text{root}\}) \\
= \{\text{Property P4: } R\{\text{root}\} = R(R\{\text{root}\})\}
\]
\[R\{\text{root}\}\]

C3. \textit{I} is preserved because \textit{marked} and \textit{marked} \cup \textit{vroot} are unchanged by C3, given \(x \in \text{vroot} \land x \in \text{marked}\) as precondition.

C4. The verification condition is
\[
\{\text{root}\} \cup \text{succ}(\text{marked}) \subseteq \text{marked} \cup \text{vroot} \subseteq R(\{\text{root}\}) \land \text{vroot} = \{} \\
\Rightarrow \text{marked} = R(\{\text{root}\}).
\]
\[
R(\{\text{root}\}) \\
\subseteq \{\text{antecedent: } \{\text{root}\} \subseteq \text{marked}. \text{ So, } R(\{\text{root}\}) \subseteq R(\text{marked})\}
\]
\[
\quad \quad R(\text{marked}) \\
= \{\text{from } \text{vroot} = \{}, \text{succ}(\text{marked}) \subseteq \text{marked}. \text{ Use Property P5}\}
\]
\[
\quad \quad \quad \quad \text{marked} \\
\subseteq \{\text{antecedent: marked} \subseteq R(\{\text{root}\})\}
\]
\[
\quad \quad \quad \quad R(\{\text{root}\})
\]

Therefore, \(R(\{\text{root}\}) \subseteq \text{marked} \subseteq R(\{\text{root}\}), \text{ so } \text{marked} = R(\{\text{root}\}).\)

\textbf{Note:} The reader may show that \textit{marked} \cup \textit{vroot} = R(\{\text{root}\}) follows from invariant \textit{I}.

3.2 Termination

Let \textit{unmarked} be the set of reachable nodes from root that are not in \textit{marked}, i.e., \textit{unmarked} = \(R(\{\text{root}\}) - \text{marked}\). Command C2 adds node \textit{x} to \textit{marked}, effectively removing it from \textit{unmarked}, thus reducing the set \textit{unmarked}; observe that \(x \in R(\{\text{root}\})\) from \textit{I}. And, command C3 removes a marked node from \textit{vroot}, thus preserving \textit{marked} and, hence, \textit{unmarked}, while reducing \textit{vroot}. Therefore, each iteration decreases the metric (\textit{unmarked}, \textit{vroot}) lexicographically, where the sets are ordered by subset ordering. Each set is finite, so this metric is well-founded, guaranteeing termination of the algorithm.

4 Introducing Further Non-determinism

The given program has exactly one point of non-determinism, in choosing a node from \textit{vroot}. Its execution from then is deterministic. We add further non-determinism as follows: choose any node \textit{x} of the graph, then choose the action to add \textit{x} to \textit{marked} or remove \textit{x} from \textit{vroot}. If \(x \not\in \text{vroot} \lor x \in \text{marked} \) and the “add” action has been chosen, do nothing. Analogously, if \(x \not\in \text{vroot} \lor x \not\in \text{marked}\) and the “remove” action has been chosen, do nothing. Otherwise, do exactly as in the previous program.

The following program is written in the style of UNITY from Chandy and Misra[1]. A UNITY program has an initialization part followed by a
set of commands. The program execution starts in a state that satisfies the initial condition. In each step an arbitrary command is chosen for execution and the execution runs forever under the requirement that every command be chosen eventually. Command execution in a step has no effect if the chosen command’s guard is false, then the step is a stutter, otherwise the command body is executed. A state in which further execution does not cause any change is called a fixed point; the set of all fixed points is denoted by the predicate FP. Program termination is equivalent to reaching a fixed point. For the given program the correctness requirement is: (1) eventually a fixed point is reached, and (2) at any fixed point marked = R(\{root\}). It will still be necessary to prove an invariant so that the invariant and FP imply the desired condition in (2).

The program executes the same actions as before interspersed, possibly, with more stutter steps.

4.1 Program

\{true\}

U1:: initially marked, vroot = \{\}, \{root\}

(\forall x : x a node in the graph :

U2:: x ∈ vroot ∧ x ∉ marked → marked, vroot := marked ∪ {x}, vroot ∪ succ({x})

\[U3:: x ∈ vroot ∧ x ∈ marked → vroot := vroot \setminus \{x\} \]

\{marked = R(\{root\})\}

4.2 Correctness: Safety and Termination

Proof of partial correctness uses the same invariant I and is identical in all respects to the proof of Section 3.1. Proof of progress that the program eventually reaches a fixed point, is more involved because of the possibility of infinite stutter.

The FP for this program, when both guards are false, is

(\forall x : x a node in the graph :

\neg(x ∈ vroot ∧ x ∉ marked)

∧ \neg(x ∈ vroot ∧ x ∈ marked)

)

which simplifies to (\forall x : x a node in the graph : x ∉ vroot) or vroot = \{\}.

We show below that eventually vroot = \{\}. No more state changes are possible beyond that point, and as in Section 3.1, I ∧ vroot = \{\} ⇒ marked = R(\{root\}).

UNITY Temporal Operators The following proof is written in UNITY logic using the temporal operators en and → that establish a given predicate eventually. Here, “eventually” means after a finite number of steps, so the required predicate holds now or after one or more steps. For a full treatment of UNITY logic see Chandy and Misra[1] and
Misra [2]. Here, we explain just enough to prove that a fixed point is reached eventually.

For state predicates \(p \) and \(q \), \(p \text{ en} \ q \) asserts that (1) Safety: once predicate \(p \) is true it will continue to hold until \(q \) holds, and (2) Progress: eventually \(q \) is established by execution of some command. For (1) show for every command \(\alpha \), \(\{ p \land \neg q \} \alpha \{ p \lor q \} \). For (2) show some command \(\beta \) for which \(\{ p \land \neg q \} \beta \{ q \} \) because \(\beta \) will be executed eventually and establish \(q \) if it has not been true already.

Operator \(\mapsto \rightarrow \) is a generalization of \(\text{en} \) where \(p \mapsto \rightarrow q \) asserts that once \(p \) is true \(q \) will eventually be true. For this paper, the only facts about \(\mapsto \rightarrow \) that we need are: (1) if \(p \text{ en} \ q \) then \(p \mapsto \rightarrow q \), (2) if \(p \mapsto \rightarrow q \) and \(p' \mapsto \rightarrow q' \) then \(p \lor p' \mapsto \rightarrow q \lor q' \), and (3) (induction) given a metric \(m \) and a well-founded order \(\prec \) over its domain, if for all possible values \(M \) in the domain of \(m \)
\[p \land m = M \mapsto \rightarrow m \prec M \] then \(\text{true} \mapsto \rightarrow \neg p \).

Proofs of Elementary Progress properties We sketch the proof of two \(\text{en} \) properties informally because the details are easy to fill in. Below, \(\prec \) denotes lexicographic order over pairs of sets, i.e., \((A, B) \preceq (A', B')\) means that \(A \subseteq A' \) or \(A = A' \land B \subseteq B' \), and \((A, B) \prec (A', B')\) is \((A, B) \preceq (A', B') \land (A, B) \neq (A', B')\).

We show for every node \(x \) in the graph (where \(S \) and \(T \) are arbitrary sets of nodes):

E1. \((\text{unmarked}, vroot) = (S, T) \land x \in vroot \land x \notin \text{marked} \) \(\text{en} \) \((\text{unmarked}, vroot) \prec (S, T) \):
Safety part for command \(U3 \) follows easily because the command does not execute in the given state, so it preserves both predicates in the property. The progress part for command \(U2 \) also implies the safety part. The progress proof is identical to that in Section 3.2.

E2. \((\text{unmarked}, vroot) = (S, T) \land x \in vroot \land x \in \text{marked} \) \(\text{en} \) \((\text{unmarked}, vroot) \prec (S, T) \):
Safety part for command \(U2 \) follows because the command does not execute in the given state, so it preserves both predicates in the property. Execution of command \(U3 \) establishes \(\text{unmarked} = S \land vroot \subset T \) because the command does not modify \(\text{marked} \), hence \(\text{unmarked} \), and it reduces \(vroot \) by removing \(x \) from it.
Proof of Termination We show true \(\rightarrow\) FP; since \(FP \equiv vroot = \{\}\), we show true \(\rightarrow\) vroot = \{\}. Below, \(x\) is any node of the graph.

\[(\text{unmarked}, vroot) = (S, T) \land x \in vroot \land x \notin \text{marked}\]
\(\rightarrow\) (unmarked, vroot) \(\prec\) (S, T) , from [E1]

\[(\text{unmarked}, vroot) = (S, T) \land x \in vroot \land x \in \text{marked}\]
\(\rightarrow\) (unmarked, vroot) \(\prec\) (S, T) , from [E2]

\[(\text{unmarked}, vroot) = (S, T) \land x \in vroot\]
\(\rightarrow\) (unmarked, vroot) \(\prec\) (S, T)

, disjunction of above two

\[(\text{unmarked}, vroot) = (S, T) \land (\exists x :: x \in vroot)\]
\(\rightarrow\) (unmarked, vroot) \(\prec\) (S, T)

, disjunction over all \(x\)

true \(\rightarrow\) \(\neg(\exists x :: x \in vroot)\), induction

true \(\rightarrow\) vroot = \{\}, from \(\neg(\exists x :: x \in vroot) \equiv vroot = \{\}\)

Acknowledgement Thanks to Leslie Lamport for discussions.

References
