Call an element a \textit{color} and a set of colors a \textit{group}. Let F be a set of groups. Suppose F meets the Condition in Hall’s theorem for Distinct Representatives, i.e., every subset of F consisting of k groups has at least k colors. Let g be a group such that $F \cup \{g\}$ does not meet the Hall condition. We give a characterization of the subsets of F which together with g fail to satisfy Hall-Condition.

\textbf{Definition:} A subset G of F is a \textit{hit} if $G \cup \{g\}$ has fewer colors than $|G| + 1$.

A hit G is a subset of F; hence, it meets the Hall-condition. Therefore, the number of colors in G is $\geq |G|$. From the definition of hit, the number of colors in G equals $|G|$.

\textbf{Theorem:} The hits form a complete lattice.

\textbf{Proof:} Let P, Q, R be three disjoint subsets of F where $P \cup Q$ and $Q \cup R$ are hits. We show that Q is a hit and so is $P \cup Q \cup R$. Let P, Q, R have p, q, r groups in them respectively. We write PQ for $P \cup Q$, QR for $Q \cup R$ and PQR for $P \cup Q \cup R$. Let cP denote the set of colors in P. The fact that F meets Hall-Condition implies that every subset of F has at least as many colors as groups, i.e., for G, a subset of F, $|G| \leq |cG|$. Since PQ and QR are hits $|cPQ| = p + q$, $|cQR| = q + r$.

$$\begin{align*}
\text{Number of groups in } PQR &= \{|\text{disjointness of } P, Q, R\} \\
&= p + q + r \\
&\leq \{|\text{PQR meets Hall-Condition}\} \\
&= \{|cPQR| = |cPQ \cup cQR|, \text{ set theory}\} \\
&= |cPQ \cup cQR|
\end{align*}$$
\[|A \cup B| = |A| + |B| - |A \cap B|, \text{ set theory} \]
\[|cPQ| + |cQR| - |cPQ \cap cQR| \]
\[= \{cPQ \cap cQR = cQ \cup (cP \cap cR) - cQ\}, \text{ set theory} \]
\[|cPQ| + |cQR| - |cQ| - |(cP \cap cR) - cQ| \]
\[= \{ |cPQ| = p + q, \ |cQR| = q + r; \text{ using } b \text{ for } |(cP \cap cR) - cQ| \} \]
\[p + q + q + r - |cQ| - b \]

We conclude that
\[p + q + r \leq p + q + q + r - |cQ| - b, \text{ or} \]
\[0 \leq q - |cQ| - b, \text{ or} \]
\[|cQ| + b \leq q \]

Now, since \(Q \) meets Hall-Condition,
\[q \leq |cQ|. \text{ Therefore,} \]
\[|cQ| + b \leq q \leq |cQ| \]
Since all quantities are natural, \(|cQ| = q \) and \(b = 0 \). Hence, number of colors of \(PQR \) is \(p + q + r \). Also,

\[cg \subseteq cPQ, \text{ and} \]
\[cg \subseteq cQR. \text{ Hence,} \]
\[cg \subseteq cPQ \cap cQR. \text{ That is,} \]
\[cg \subseteq cQ \cup (cP \cap cR) - cQ \}. \text{ Since } |(cP \cap cR) - cQ| = b = 0 \]
\[cg \subseteq cQ \]

Since the number of groups in \(Q \) equals the number of colors in \(Q \) and colors of \(g \subseteq \text{colors of } Q \), \(Q \) is a hit.

Next, observe that \(cg \subseteq cPQ \subseteq cPQR \), and number of groups in \(PQR \) equals the number of colors in \(PQR \). Hence \(PQR \) is also a hit.