A Proof about the Harmonic Series Jayadev Misra 8/13/98

The following problem and its solution was shown to me by Carroll Morgan.

Problem: Show that $\sum_{i=2}^{n} \frac{1}{i}$ is non-integer, for all $n, n \ge 2$.

Proof: Let p be the largest prime less than or equal to n. Such a p exists because $n \ge 2$.

Lemma 1: $n! = k \times p$ for some k where $k \neq 0 \mod p$.

Proof: from Bertrand's theorem, $2 \times p > n$. Therefore, n! has exactly one factor -p- that is a multiple of p.

Lemma 2: For all $i, 2 \le i \le n$: $(\frac{n!}{i} = 0 \mod p) \equiv (i \ne p)$.

Proof: Using Lemma 1, For i = p, $\left(\frac{n!}{p} = k \neq 0 \mod p\right)$. For $i \neq p$, $\left(\frac{n!}{i} = \frac{k}{i} \times p = 0 \mod p\right)$, since k is divisible by i.

The given sum is,

$$\frac{\sum_{i=2}^{n} \frac{n!}{i}}{n!}$$

The numerator is a sum of terms all of which except one is congruent to $0 \mod p$. Therefore, numerator $\neq 0 \mod p$. Hence, the numerator is not divisible by n! since the latter contains p as a factor.