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1 Introduction

This note is meant to teach program development and formal proof in an intro-
ductory computer science course. Given a bag of items consider finding all items
that occur more often than a given fraction of the bag size, 1/k for some integer
k, k ≥ 2. This is known as the heavy hitters problem. An excellent introduction
to the problem, along with the more recent advances such as ε-approximate
heavy hitters, appear in Roughgarden and Valiant [3]. The first algorithm for
this problem, due to Misra and Gries [2], is used as the motivation for the note.

There are two special cases of the problem that are worth noting. For a bag
of size n, setting k to n yields all elements that have duplicates. The heavy-
hitters algorithm is not particularly efficient at solving the duplicates problem;
the algorithm works well only for small values of k. In particular, setting k to
2 finds the majority element of a bag, if one exists, efficiently.

In the following section we treat the problem of finding the majority element.
The original algorithm for this special case is due to Boyer and Moore [1]. They
were interested in a mechanical proof of the algorithm that was coded in Fortran,
making its analysis particularly hard. Our description of the majority algorithm
avoids using any specific programming language though there is enough detail
that a student can easily code it in a common imperative language.

In Section 3 we treat the problem for general k. The general algorithm
follows the same pattern as the algorithm for the majority problem.

2 The Boyer-Moore Majority Finding Algorithm

Given is a finite bag B of items. An item may occur multiple times in a bag.
A majority item is one that occurs more often in the bag than all other items
combined. Call occurrence of an item in the bag an element of the bag.

It is required to find the majority item of B, if one exists, or indicate that
there is no such item. The Boyer-Moore algorithm solves this problem by making
two passes over the elements of B where each pass runs in linear time. The first
pass suggests a candidate item for majority, or that no such candidate exists
(so there is no majority item). The second pass determines if the suggested
candidate is indeed a majority item. The second pass is straightforward, by
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counting the number of occurrences of the candidate item in B, so we consider
only the first pass in this note. The algorithm is based on the next proposition.

Proposition 1 Removing two distinct elements from a bag does not alter the
majority item, if the bag has one.

Proof: Suppose two distinct elements from A are removed to get bag A′. The
number of occurrences of a majority item in A is more than |A|/2. It is reduced
by at most one in A′ since the removed elements are distinct. So, the number
of its occurrences in A′ is more than |A|/2− 1 = (|A| − 2)/2 = |A′|/2. So, it is
a majority item of A′. 2

Proposition 1 can be written formally as follows. Overload the usual set
notation to apply to bags. Let maj(A) be the set of majority items of A. That
is, if A has a majority item —and there can be at most one— maj(A) is a
singleton set, otherwise it is the empty set. Given that x and y are two distinct
elements of A, the proposition says that: maj(A) ⊆ maj(A− {x, y}). Observe
that maj(A) = maj(A−{x, y}) does not hold: consider A = {1, 2, 3} from which
two distinct elements, 1 and 2, are removed; then, maj({1, 2, 3}) 6= maj({3}).

2.1 An Abstract Algorithm

An abstract algorithm, based on this proposition, is as follows: continue remov-
ing pairs of distinct elements from bag B as long as it is possible. At termination
either the bag is empty —so, there is no majority item— or it has one or more
instances of a single item that is a candidate for the majority.

A simple implementation of this idea is as follows: initially, remove any item
from B and hold it in a separate bag, c. In each subsequent step, remove an
item from B; if it differs from an item of c then cast out both elements, and if it
is identical add the item to c (formally, any element matches every element of an
empty bag). Steps are repeated until B becomes empty. From the construction,
all the elements in bag c are identical, and from Proposition 1, the majority
item, if any, belongs to c at the termination.

Below, the reduced bag B is called b during the run of the program. Symbol
φ is the empty bag.

initially b, c := B,φ
while b 6= φ do

pick any x from b {x ∈ b}
if there exists y in c such that x 6= y

then b, c := b− {x}, c− {y}
else {for all y in c, x = y} b, c := b− {x}, c ∪ {x}

enddo

2.2 Correctness

We claim that the algorithm terminates, and on termination either c is empty
or it consists of a single item, m, perhaps multiple times. If B has a majority
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item then it is m. The converse does not hold, i.e., if c includes m then m is
not necessarily the majority item because B may have none. So, a second pass
determines if indeed m is the majority item.

Proposition 2 Invariant: All elements of c are identical.

Proof: The invariant holds initially because c is empty. In each step either an
element is removed from c, or an element that equals every element of c, is
added to c. Therefore, a step preserves the invariant. 2

The following invariant encodes Proposition 1.

Proposition 3 Invariant: maj(B) ⊆ maj(b ∪ c).

Proof: The invariant holds initially because b ∪ c = B. Next, we show that
each step preserves the invariant. The step corresponding to the “else” clause
does not alter b∪ c. For the step corresponding to the “then” part, the required
annotation is shown below.

{maj(B) ⊆ maj(b ∪ c) ∧ x ∈ b ∧ y ∈ c ∧ x 6= y}
b, c := b− {x}, c− {y}
{maj(B) ⊆ maj(b ∪ c)}

Using the axiom of assignment, we need to show,
maj(B) ⊆ maj(b ∪ c) ∧ x ∈ b ∧ y ∈ c ∧ x 6= y

⇒ maj(B) ⊆ maj((b− {x}) ∪ (c− {y})).

The proof is as follows.

maj(B) ⊆ maj(b ∪ c) ∧ x ∈ b ∧ y ∈ c ∧ x 6= y
⇒ {use Proposition 1: maj(b ∪ c) ⊆ maj(b ∪ c− {x, y} }

maj(B) ⊆ maj(b ∪ c− {x, y}) ∧ x ∈ b ∧ y ∈ c ∧ x 6= y
⇒ {x 6= y; so (b ∪ c)− {x, y} = (b− {x}) ∪ (c− {y})}

maj(B) ⊆ maj((b− {x}) ∪ (c− {y}))

Proposition 4 The algorithm terminates.

Proof: Each iteration of the loop reduces the size of b by 1; so, the number of
iterations is exactly |B|. 2

Proposition 5 Suppose B has a majority item m. Then, at termination c
consists of one or more copies of m.

Proof: From the invariant maj(B) ⊆ maj(b ∪ c), and at termination b = φ.
So, maj(B) ⊆ maj(c). If maj(B) = {m} then {m} ⊆ maj(c). And, from
Proposition 2, all elements of c are identical. So, c consists of one or more
copies of m. 2
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2.3 Algorithm Optimization

Bag c consists of zero or more copies of a single item at any point during the
algorithm. Therefore, it may be encoded by two values i and n, item i occurs
n times in c (if n = 0, i is irrelevant). The algorithm can then be written as
follows.

initially b, i, n := B, , 0
while b 6= φ do

pick any x from b {x ∈ b}
if n > 0 ∧ x 6= i {c is non-empty, so i has a value}

then b, n := b− {x}, n− 1
else {n = 0 ∨ (n > 0 ∧ x = i)} b, i, n := b− {x}, x, n+ 1

enddo

Note: i is assigned to x in the last step of the program because preceding this
step if n = 0 then i may have an irrelevant value.

3 The Heavy Hitters Problem

It is required to find every item that occurs more than |B|/k times in bag B for
a given k, k ≥ 2; these items are the, so called, heavy hitters.

The special case of k = 2, the majority problem, has been treated in the pre-
vious section. The general case closely follows the development of the majority
problem. The fundamental observation for the majority problem, Proposition 1,
is generalized in Proposition 6. Let hh(A) be the set of heavy hitters in bag A,
where the parameter k is implicit.

Proposition 6 Remove k distinct elements from A to get bag A′. Then all
heavy hitters of A are heavy hitters of A′, i.e., hh(A) ⊆ hh(A′).

Proof: The number of occurrences of any heavy hitter in A is more than |A|/k.
It is reduced by at most one in A′ since removed elements are distinct. Then, the
number of its occurrences in A′ is more than |A|/k − 1 = (|A| − k)/k = |A′|/k.
So, it is a heavy hitter of A′. 2

An Abstract Algorithm The abstract algorithm, corresponding to the one
in Section 2.1, is similar. Bag b is as before, and c contains fewer than k items
at any point in the algorithm.

initially b, c := B,φ
while b 6= φ do

pick any x from b {x ∈ b}
if c ∪ {x} has k distinct items

then b := b− {x}; remove k distinct elements from c ∪ {x}
else {c ∪ {x} has fewer than k distinct items} b, c := b− {x}, c ∪ {x}

enddo
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Correctness We assert that the algorithm terminates, and at termination c
includes all heavy hitters of B. Each proposition for the majority case has a
counterpart here.

1. Bag c contains fewer than k distinct items at any point during the algo-
rithm: This assertion holds initially. In the iteration if the “then” clause
holds then, inductively, c has fewer than k distinct items and the step may
remove, but does not add any element to c. So, c continues to hold fewer
than k distinct items after the step. For the “else” clause, the precondi-
tion is c ∪ {x} has fewer than k distinct items; so, assigning c := c ∪ {x}
satisfies the assertion after the step.

2. hh(B) ⊆ hh(b∪c) is invariant: The invariant holds initially because b∪c =
B. Next, we show that each step of the loop preserves the invariant. The
step corresponding to the “else” clause does not alter b ∪ c. For the step
corresponding to the “then” part, apply Proposition 6.

3. The algorithm terminates because each step decreases the size of b.

4. At termination, c includes all the heavy hitters of B, i.e., hh(B) ⊆ c:
Actually, we prove the stronger result, hh(B) ⊆ hh(c). From (2), above,
hh(B) ⊆ hh(b ∪ c) is invariant. And, at termination b = φ, so, the result
follows.

A subtle difference between majority and heavy hitters algorithms
For the majority problem, at termination c is either empty or it consists of
identical elements. If c is non-empty, the item in it is the sole candidate for
majority. For heavy hitters we have a stronger result. Since hh(B) ⊆ hh(c)
at termination, we may discard all items that are not heavy hitters in c from
further consideration.

To see that some elements of c can be discarded, consider c = {1, 1, 1, 2} at
termination with k = 3. Now, hh(c) = {1} because only item 1 occurs more
than 4/3 times in c. Therefore, 2 can be discarded as a heavy hitter candidate for
B, just by considering c. This c could have resulted from B = {1, 2, 3, 1, 1, 1, 2}
where the elements of B are picked in the algorithm in the order shown.

Finding the heavy hitters of c can be very efficient. Bag c can be stored as a
set of pairs (i, n) where item i occurs n times in c. At termination i is a heavy
hitter of c if n > |c|/k.

Implementation We do not discuss the appropriate data structure for c so
that the crucial test “c∪{x} has k distinct items” and removing k distinct items
from c∪{x} can be done efficiently. The algorithm in Misra and Gries [2] shows
a data structure that takes Ø(log k) time for each iteration, so the total time is
|B| ×Ø(log k).
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