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Let f be a function from naturals to naturals. It is given that

Property P:: (∀n :: f2(n) < f(n + 1)).

Prove that f is the identity function. We will actually prove that the same
result holds under the more general condition given below:

Property Q:: (∀n : (∃i : i ≥ 2 : f i(n) < f(n + 1))).

I have heard that this problem appeared in a mathematical olympiad. The
problem was shown to me by van de Snepscheut on 12/13/89, who received
it from Richard Bird. This is a belated recording of my response to van de
Snepscheut, though the generalization is new.

Henceforth, all variables are naturals.

Lemma 1: f is increasing, i.e., (∀n :: n ≤ f(n)).
Proof:: There seems to be no direct proof of this result by induction. We will
show, instead, that R :: (∀n :: R.n), where R.n is (∀t :: n ≤ f(n + t)). The de-
sired result follows by setting t to 0 in each R.n. The proof of R is by induction
on n.

R.0 :: (∀t :: 0 ≤ f(t)). This follows because f is a function from naturals to
naturals.
R.n ⇒ R.(n + 1): We prove n + 1 ≤ f(n + 1 + t) for arbitrary t, assuming that
R.n holds.

true
⇒ {Induction hypothesis}

(∀s :: n ≤ f(n + s)) ∧ n ≤ f(n + t)
⇒ {f(n + t)− n ≥ 0 from above.

Set s to f(n + t)− n in the first term.}
n ≤ f(n + f(n + t)− n)

⇒ {Rewriting}
n ≤ f2(n + t)

⇒ {From property P: f2(n + t) ≤ f(n + 1 + t)}
n < f(n + 1 + t)

⇒ {arithmetic}
n + 1 ≤ f(n + 1 + t) 2

Lemma 2: f is monotone, i.e., (∀m,n :: m ≤ n ⇒ f(m) ≤ f(n)).
Proof::
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true
⇒ {Set n to f(n) in Lemma 1}

f(n) ≤ f2(n)
⇒ {From property P: f2(n) < f(n + 1)}

f(n) < f(n + 1)
⇒ {Induction on naturals}

m ≤ n ⇒ f(m) ≤ f(n) 2

Corollary:: f(n) < f(m) ⇒ n < m, by taking contrapositive of Lemma 2.

Theorem 1: f is the identity function, i.e., f(n) = n, for all n.
Proof::

true
⇒ {Property P}

f(f(n)) < f(n + 1)
⇒ {Corollary of Lemma 2}

f(n) < n + 1
⇒ {Lemma 1: n ≤ f(n)}

n ≤ f(n) < n + 1
⇒ {Arithmetic}

n = f(n)

A Generalization

We show that if property Q:: (∀n : (∃i : i ≥ 2 : f i(n) < f(n + 1))) holds
then f is an identity function. Note that if i = 0 for all n then the property
is a tautology, n < n + 1. For i = 1 the conclusion is incorrect; the successor
function satisfies the property.

Lemma 3: f is increasing, i.e., (∀n :: n ≤ f(n)).
Proof:: Let S = (∀n :: S.n) where S.n = (∀t :: n ≤ f(n + t)). We prove S is by
induction on n.

S.0:: (∀t :: 0 ≤ f(t)). Follows trivially.
S.n ⇒ S.(n + 1):: By induction hypothesis assume that A:: (∀s :: n ≤

f(n + s)).

Claim For all natural k, t, we have n ≤ fk(n + t). Proof is by induction on
k.

k = 0: n ≤ n + t. Follows trivially.
k + 1:

true
⇒ {Assumption A}

n ≤ f(n + s)
⇒ {Induction hypothesis: n ≤ fk(n + t).

Set s to fk(n + t)− n; note s ≥ 0.}
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n ≤ f(n + fk(n + t)− n)
⇒ {arithmetic}

n ≤ fk+1(n + t) 2

Now we show that n + 1 ≤ f(n + 1 + t), for any t. For the given n, t, let j
be such that f j(n + t) < f(n + 1 + t); such a j exists from Property Q.

true
⇒ {Claim above}

n ≤ f j(n + t)
⇒ {given that f j(n + t) < f(n + 1 + t)}

n < f(n + 1 + t)
⇒ {arithmetic}

n + 1 ≤ f(n + 1 + t) 2

Corollary: For any natural k, n, we have n ≤ fk(n). Proof is by induction on k.

Lemma 4: f is monotone; i.e., m ≤ n ⇒ f(m) ≤ f(n).
Proof:: Let m be an arbitrary natural. Let i be such that f i(m) < f(m + 1);
such an i exists from Property Q.

true
⇒ {Let n, k := f(m), i− 1 in Corollary to Lemma 3.

Note i ≥ 2 ⇒ k ≥ 0.}
f(m) ≤ f i−1(f(m))

⇒ {Given f i(m) < f(m + 1)}
f(m) < f(m + 1)

The result follows by induction on natural numbers. 2

Corollary 1:: f(n) < f(m) ⇒ n < m.
Corollary 2:: For any k, k ≥ 0, and all m,n, we have fk(n) < fk(m) ⇒ n < m.
Proof is by induction on k.

Theorem 2: f(n) = n, for all n. Pick an arbitrary n and let f i(n) < f(n + 1).

true
⇒ {assumption}

f i(n) < f(n + 1)
⇒ {In corollary to Lemma 3 let n, k := f(n + 1), i− 2.

Note i ≥ 2 ⇒ k ≥ 0.}
f i(n) < f(n + 1) ∧ f(n + 1) ≤ f i−2(f(n + 1))

⇒ {arithmetic}
f i(n) < f i−2(f(n + 1))

⇒ {Rewrite above}
f i−1(f(n)) < f i−1(n + 1)

⇒ {Corollary 2 of Lemma 4 with k, n, m := i− 1, f(n), n + 1}
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f(n) < n + 1
⇒ {Lemma 3}

n ≤ f(n) < n + 1
⇒ {arithmetic}

f(n) = n 2
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