
Knuth-Morris-Pratt Algorithm

Jayadev Misra

June 5, 2017

The Knuth-Morris-Pratt string matching algorithm (KMP) locates all oc-
currences of a pattern string in a text string in linear time (in the combined
lengths of the two strings). It is a refined version of a naive algorithm.

1 Informal Description

Let the pattern be “JayadevMisra”. Suppose, we have matched the portion
“JayadevM” against some part of the text string, but the next symbol in the
text differs from ’i’, the next symbol in the pattern. The naive algorithm would
shift one position beyond ’J’ in the text, and start the match all over starting
with the first symbol of the pattern. The KMP algorithm is based on the
observation that no symbol in the text that we have already matched with
“JayadevM” can possibly be the start of a full match: we have just discovered
that the there is no match starting at ’J’, and there is no match starting at any
other symbol because none of them is a ’J’. So, we may skip this entire string
in the text and shift to the next symbol beyond “JayadevM” to begin a match.

In general, we will not be lucky enough to skip the entire piece of text that
we had already matched, as we could in the case of “JayadevM”. For instance,
suppose the pattern is “axbcyaxbts”, and we have already matched “axbcyaxb”;
see Table 1. Suppose the next symbol in the text does not match ’t’, the next
symbol in the pattern. A possible match could begin at the second occurrence
of ’a’, because the text beginning at that point is “axb”, a prefix of the pattern.
So, we shift to that position in the text, skip over “axb” and continue matching
the remaining portion of the pattern, “cyaxbts”; see Table 1.

2 Algorithm Outline

Notation Let the text be t and the pattern be p. The symbols in a string
are indexed starting at 0. Write t[i] for the ith symbol of t, and t[i..j] for the
substring of t starting at i and ending just before j, i ≤ j. Therefore, the length
of t[i..j] is j− i; it is empty if i = j. Similar conventions apply to p. The length
of string r is |r|.

1

At any point during the algorithm we have matched a portion of the pattern
against the text; we maintain the following invariant where l and r are indices
in t defining the two ends of the matched portion.

KMP-INV:
l ≤ r ∧ t[l..r] = p[0..r − l], and
all occurrences of p starting prior to l in the text have been located.

The invariant is established initially by setting

l, r := 0, 0

In subsequent steps we compare the next symbols from the text and the
pattern. If there is no next symbol in the pattern, we have found a match, and
we discuss what to do next below. For the moment, assume that p has a next
symbol, p[r − l].

Below, b → C, where b is a predicate and C a sequence of statements, is
known as a guarded command ; b is the guard and C the command. Command
C is executed only if b holds. Below, exactly one guard is true in any iteration.

t[r] = p[r − l] → r := r + 1
{ more text has been matched }

t[r] 6= p[r − l] ∧ r = l → l := l + 1; r := r + 1
{ we have an empty string matched so far;

the first pattern symbol differs from the next text symbol }
t[r] 6= p[r − l] ∧ r > l → l := l′

{ a nonempty prefix of p has matched but the next symbols don’t }

Note that in the third case, r is not changed; so, none of the symbols in
t[l′..r] will be scanned again. The question (in the third case) is, what is l′?
Abbreviate t[l..r] by v and t[l′..r] by u. Now v is a prefix of p and also u is a
prefix of p. Since l′ > l, u is a shorter prefix than v. Therefore, u is a proper
prefix of v. Further, since their right ends match, t[l′..r] is a proper suffix of
t[l..r], i.e., u is a proper suffix of v. We may set l′ to any value such that u is a
proper prefix and suffix of v.

Example An example is in schematic form in Table 1. Here, we have already
matched the prefix “axbcyaxb”, which is v. There is a mismatch in the next
symbol. We shift the pattern so that the prefix “axb”, which is u, is aligned
with a portion of the text that matches it. 2

There could be many strings that are both prefix and suffix of v; which one
should we choose as u? The only safe choice is the longest such string so that
we do not miss a possible match. Call the longest string that is both a prefix
and suffix of v the core of v. Then l′ := l+ (length of v)− (length of core of v).
Since v is a prefix of p, we precompute the cores of all prefixes of the pattern,
so that we may compute l′ whenever there is a failure in the match. After
the pattern has been completely matched, we record this fact and let l′ =
l + (length of p)− (length of core of p).

2

index l l′ r
text a x b c y a x b z - - - - - -
pattern a x b c y a x b t s
newmatch a x b c y a x b t s

Table 1: Matching in the KMP algorithm

KMP runs in linear time. This is because l+ r increases in each step (in the
last case, l′ > l). Both l and r are bounded by the length of the text string; so
the number of steps is bounded by a linear function of the length of text. The
core computation, given in Section 4, is linear in the size of the pattern. So, the
whole algorithm is linear.

In the rest of the note we develop the underlying theory (Section 3) and a
procedure to compute the cores of all prefixes of any string (Section 4).

3 Underlying theory

3.1 Bifix

For strings u and v, write u � v to mean that u is both a prefix and a suffix of
v and call u a bifix of v. Observe that u is a bifix of v iff u is a prefix of v and
the reverse of u is a prefix of the reverse of v. As is usual, we write u ≺ v to
mean that u � v and u 6= v.

The following properties of � follow; you are expected to develop the proofs.
Henceforth, u and v denote arbitrary strings and ε is the empty string.

Exercise 1

1. ε � u.

2. � is a partial order. Use the fact that prefix relation is a partial order.

3. There is a total order among all bifixes of v, for any v, i.e.,

(u � v ∧ w � v) ⇒ (u � w ∨ w � u) 2

3.2 Core

For any nonempty v, core of v, written as c(v), is its longest bifix. The core is
defined for every non-empty string because there is at least one string, namely
ε, that is a bifix of every nonempty string.

3

a ab abb abba abbab abbabb abbabba abbabab
ε ε ε a ab abb abba ab

Table 2: Example of cores

Example Cores of several strings are given in Table 2.
The traditional way to formally define core of v, c(v), is as follows: (1)

c(v) ≺ v, and (2) for any w where w ≺ v, w � c(v). We give a different, though
equivalent, definition that is more convenient for formal manipulations (some
readers may discern a Galois connection). For any u and v, v 6= ε,

(core definition): u � c(v) ≡ u ≺ v

It follows, by replacing u with c(v), that c(v) ≺ v. So, |c(v)| < |v|. Every non-
empty string v has a core because ε ≺ v. The core is unique. To see this, let r
and s be cores of v; we show that r = s. From the definition using r and s for
c(v), conclude u � r ≡ u ≺ v and u � s ≡ u ≺ v. That is, u � r ≡ u � s,
for all u. Setting u to r, we get r � r ≡ r � s, i.e., r � s. Similarly, deduce
s � r. So, r = s from the antisymmetry of �. 2

Write ci(v) for i-fold application of c to v, i.e., ci(v) =

i times︷ ︸︸ ︷
c(c(..(c (v)..))) and

c0(v) = v. Since |c(v)| < |v|, ci(v) is defined only for some i, not necessarily all
i, in the range 0 ≤ i ≤ |v|. Note that, ci+1(v) ≺ ci(v) . . . c1(v) ≺ c0(v) = v.

Exercise 2

1. Let u be a longer string than v. Is c(u) necessarily longer than c(v)?

2. Show that the core function is monotonic, that is,

u � v ⇒ c(u) � c(v)

3. What is ci(ab)n for i ≤ n? 2

4

3.3 A characterization of bifix using the core function

The following proposition says that every bifix of v can be obtained by applying
function c a sufficient number of times to v.

P1: For any u and v, u � v ≡ 〈∃i : 0 ≤ i : u = ci(v)〉.
Proof: The proof is by induction on the length of v.

• |v| = 0:

u � v
≡ {|v| = 0, i.e., v = ε}

u = ε ∧ v = ε
≡ {definition of c0: v = ε ⇒ ci(v) is defined for i = 0 only}

〈∃i : 0 ≤ i : u = ci(v)〉

• |v| > 0:

u � v
≡ {definition of �}

u = v ∨ u ≺ v
≡ {definition of core}

u = v ∨ u � c(v)
≡ {|c(v)| < |v|; apply induction hypothesis on second term}

u = v ∨ 〈∃i : 0 ≤ i : u = ci(c(v))〉
≡ {rewrite}

u = c0(v) ∨ 〈∃i : 0 < i : u = ci(v)〉
≡ {rewrite}

〈∃i : 0 ≤ i : u = ci(v)〉 2

Corollary For any u and v, v 6= ε,

u ≺ v ≡ 〈∃i : 0 < i : u = ci(v)〉

3.4 Incremental computation of core

The following proposition characterizes the core of us, where s is a symbol, in
terms of the bifixes of u.

P2: ws is the core of us iff w is the longest bifix of u whose successor symbol
is s. If no bifix of u has s as its successor symbol, c(us) = ε.
Proof: We show below that vs is a bifix of us iff v is a bifix of u whose successor
symbol is s. This proves (P2).

vs ≺ us
≡ {vs is a proper prefix and suffix of us}

v is a proper prefix and suffix of u, successor symbol of v is s
≡ {definition of ≺}

v ≺ u, successor symbol of v is s

5

4 Computing cores

The KMP algorithm needs the core of string u when the pattern match fails
after having matched u. String u is a prefix of the pattern string p. Therefore,
we pre-compute the cores of all non-empty prefixes of p.

4.1 Implementation

First, let us decide how to store the cores. Any core of a prefix of p is a prefix
of p. So, instead of storing the actual cores we may simply store their lengths.
Let d be an array where d[k], for k > 0, is the length of the core of p[0..k], i.e.,
d[k] = |c(p[0..k])|. (d[0] has no value because ε does not have a core.) Therefore,
d[k] < k for all k > 0, which can also be proved as an invariant of the program
given below.

The computation is based on Proposition P2 of Section 3.4. After computing
the cores up to some prefix u to compute the core of us, where s is the successor
symbol of u, consider all bifixes of u in the order of decreasing lengths until one
is found whose successor symbol is s. The successively smaller bifixes of u are
c(u), c2(u), . . ., from Proposition P1 of Section 3.4. If no such bifix is found,
c(us) = ε.

The following program includes variables i and j in addition to the pattern
p and array d, where u = p[0..j], s = p[j], the cores of all prefixes of up to
and including u are known (and stored in d), and i is the length of the bifix
of u that is under consideration for the computation of c(us), according to
Proposition P2. The successor symbol of this bifix is p[i].

j := 1; d[1] := 0; i := 0;
while j < |p| do

S1:: p[i] = p[j] → i, j := i+ 1, j + 1; d[j] := i
S2:: p[i] 6= p[j] ∧ i 6= 0 → i := d[i]
S3:: p[i] 6= p[j] ∧ i = 0 → j := j + 1; d[j] := 0

endwhile

4.2 Analysis of the running time of core computation

We show that the program for core computation runs in linear time in the
length of pattern p. Specifically, execution of each guarded command increases
2j − i. Since j ≤ |p| and i ≥ 0 (prove these as invariants), 2j − i never exceeds
2|p|. Initially, 2j − i = 2. Therefore, the number of executions of all guarded
commands is O(|p|).

We show

{2j − i = n} right side of Sk {2j − i > n}, 1 ≤ k ≤ 3

Each proof starts with this goal and successively reduces the number of state-
ments in the assertion until a only a logical proposition, true, is to be established.

6

• Proof for S1:

{2j − i = n} i, j := i+ 1, j + 1; d[j] := i {2j − i > n}
, goal

{2j − i = n} i, j := i+ 1, j + 1 {2j − i > n}
, axiom of assignment

2j − i = n ⇒ 2(j + 1)− (i+ 1) > n
, axiom of assignment

true , arithmetic 2

• Proof for S2:

{2j − i = n} i := d[i] {2j − i > n}
, goal

2j − i = n ⇒ 2j − d[i] > n , axiom of assignment
2j − i < 2j − d[i] , arithmetic
d[i] < i , arithmetic
true , program invariant 2

• Proof for S3:

{2j − i = n} j := j + 1; d[j] := 0 {2j − i > n}
, goal

{2j − i = n} j := j + 1 {2j − i > n}
, axiom of assignment

{2j − i = n} {2(j + 1)− i > n}
, axiom of assignment

2j − i = n ⇒ 2(j + 1) > n , using i = 0 from the guard of S3

true , arithmetic 2

Exercise 3

1. Show that you can match pattern p against text t by computing the cores
of all prefixes of pt (pt is the concatenation of p and t).

2. Define u to be the k-core of string v, where k ≥ 0 and v 6= ε, if u ≺ v, u’s
length is at most k and u is the longest string with this property. Show
that the k-core is well-defined. Devise an algorithm to compute the k-core
of a string for a given k. 2

Acknowledgement I am grateful to Steve Li for pointing out an error in the
text and that the definition of core is motivated by Galois connection.

7

