The following variation of Koenig’s lemma has proved useful in program semantics. Let S and T be arbitrary trees, possibly infinite. Each node of S maps to an arbitrary set of nodes of T. Henceforth, whenever node x of S includes node y of T in its map we say x covers y. The theorem below gives conditions under which every path of T is covered by some path of S.

Formally, let S and T be two trees whose nodes we also designate by S and T. Let \textit{cover} be a binary relation over $S \times T$. Say that x covers y (y is covered by x) if $(x, y) \in \textit{cover}$, and for sets of nodes X, Y, where $X \subseteq S$ and $Y \subseteq T$, X covers Y (Y is covered by X) if each node of Y is covered by some node of X.

Theorem Given S, T and \textit{cover} as above, suppose:

1. Each node of T is covered by a non-empty finite set of nodes.
2. If x covers y then the ancestors of x in S (that includes x) cover the ancestors of y.

Then every path of T is covered by some path of S. \square

Observe that a node of S may cover zero, finite or infinite number of nodes, and there is no restriction on the degrees of nodes of S and T. The theorem is of interest only when T is infinite, because for finite T every terminal node y of T is covered by some node of S whose ancestors cover the path to y, from (C2).

Proof of the Theorem First, without loss in generality, add a new root s to S, t to T and the pair (s, t) to \textit{cover}. Neither the hypotheses nor the conclusion are affected by this construction.

Let p be a path in T starting at t. Construct a tree R from S and p as follows. The nodes of R are $\{(x, y) \mid (x, y) \in \textit{cover}, y \in p\}$. Node (x, y) is the parent of (x', y'), $y' \neq t$, where y is the parent of y' in p and x the ancestor of x' closest to it in S that covers y. Such an x exists because of condition (C2). Node x may possibly be x'. Every node in R except (s, t) has a parent. Observe:

1. R is a tree with root (s, t). Every node of p is the second component of a distinct node of R. Hence, if p is infinite so is R.
2. Every node of R has finite degree: node (x, y) of R has children of the form (x', y') where y' is the unique child of y in p. From (C1), y' is covered by a finite number of nodes.
3. Apply Koenig’s lemma in conjunction with items (1) and (2) to establish the existence of an infinite path q in R. Let q_1 and q_2 be the sequences of first and second components, respectively, of q. By construction, $q_2 = p$. And q_1 corresponds to a path of S that covers p, because (x, y) is the parent of (x', y') in q where x is an ancestor of x' in S. The path corresponding to q_1 is finite if some node of S appears infinitely often in q_1. \square
Koenig’s lemma is easily established from this theorem. Given an infinite tree with finite degree at each node, we have to show the existence of an infinite path. Let S be the given tree and T just a path whose nodes are numbered consecutively from the root with natural numbers. Let x cover n where n is the level of x. Condition (C1) is met because every level has a finite non-zero number of nodes, and (C2) is easily seen to be met. So, there is a path of S that covers T, and since each node of a path of S has a different level, the path is infinite.

A Stronger Version of the Theorem
Condition (C1) may be weakened as follows to obtain a stronger version of the theorem.

(C1'). An infinite path in T has an infinite number of nodes with finite coimage
(coimage is the set of nodes that cover a specific node).

The proof can be modified as follows given (C1'). For an infinite path p in T, construct a compressed path p' retaining only the nodes that have finite coimage. Path p' is infinite and it meets condition (C1) for the nodes in it. Use the given proof to create a path q in R. As before, q_1 corresponds to a path in S that may include additional nodes. This path in S, using (C2), covers all the nodes of p, including those that were removed during compression.