The following problem was shown to me by Adnan Aziz of the ECE department at UT.

It is required to maintain a queue Q that supports the traditional “add-at-the-left” (add) and “remove-from-the-right” ($remove$) operations. Additionally, it should support a max operation that returns the maximum value in Q. The inclusion of max makes it impossible to implement each operation in constant time in the worst case. What is required is an implementation that runs in amortized $O(n)$ time for $O(n)$ operations.

Call an item a $peak$ if it is strictly larger than all item to its left in Q. Let P be the sequence of peaks in the same order as they appear in Q. Observe that the peaks are monotone increasing from left to right in P. Thus, the rightmost peak is the largest peak and, hence, the largest item in Q. Further, the leftmost item of Q is the smallest (leftmost) peak in P.

The operations on Q are implemented as follows.

1. max: Return the value of the rightmost peak.
2. $remove$: Remove the rightmost item of Q. If it is a peak (then it is the rightmost peak), also remove it from (the right end) of P.
3. $add(x)$: Add x at the left of Q. It is a peak, and the next peak is the first peak to its right in P that is larger than x. Therefore, scan over P from left to right removing all peaks that are less than or equal to x. Then add x at the left of P.

The operations on P are such that P can be implemented as a double-ended queue. Then max and $remove$ incur constant cost. Executing an $add(x)$ may take as many as $O(m)$ steps where m is the length of Q; we show that it incurs only constant amortized cost.

For each $add(x)$ operation assign a cost of 1 unit to x and to each peak that is removed from P. Since a peak becomes a non-peak at most once, we have the invariant that for each item in Q a peak has a cost of 1 and a non-peak a cost of 2. A $remove$ operation incurs the cost associated with the item removed, which is at most 2. For $O(n)$ operations the queue length is at most $O(n)$ with a total cost of $O(n)$, and the $add(x)$ and $remove$ incur costs of $O(n)$.

For practical implementation a binary search tree is the preferred way of implementing P.