Pairing Integers so that their sums are primes
Jayadev Misra
1/31/05

The following problem was shown to me by Gérard Huet.

Problem: For every even positive integer \(n \), pair the integers up to \(n \) so that the sum of each pair is prime.

For \(n = 2 \), the pairing is \((1, 2)\). For \(n = 4 \), a pairing is \((1, 2), (3, 4)\), and another is \((1, 4), (2, 3)\).

Proof: Henceforth, all integers are positive. We make use of the following theorem, postulated by Bertrand (in 1845) and proved by Chebyshev (in 1850): For every integer \(m, m \geq 2 \), there is a prime \(p, m < p < 2 \times p \). We use a special case of this result. Noting that \(p \) is odd: for every even integer \(n \), there is an odd integer \(i, i < n \), such that \(n + i \) is prime.

We prove the required result using induction on \(n \).

- \(n = 2 \): the pairing is \((1, 2)\).

- \(n > 2 \): Let \(i \) be as given by Bertrand’s theorem. First, we pair the integers between \(i \) and \(n \) inclusive. Pair \(k \) with \(n + i - k \). Their sum, \(n + i \), is prime. Note that the pairing rule is valid because: (1) pairing is symmetric: \(n + i - k \) is paired with \(n + i - (n + i - k) \), i.e., \(k \), and (2) members of a pair are distinct because their sum, \(n + i \), is odd.

Next, we pair the integers up to \(i - 1 \). If \(i = 1 \), the pairing is vacuous. Otherwise, \(i - 1 \) is even (because \(i \) is odd) and \(i - 1 < n \). From the induction hypothesis, there is a pairing up to \(i - 1 \).