A Useful Recurrence for Division Jayadev Misra 6/20/96

We show a recurrence that is useful for division. To compute 1/y where y = 1 - x, and $0 \le x < 1$, we start with the identity

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$$

For finite precision, we compute $1 + x + x^2 + x^3 + ... + x^N$, for some N. Observe that, for all $n \ge 0$

$$1 + x + x^{2} + x^{3} + \dots + x^{2^{n+1}-1}$$

= (1 + x)(1 + x²)(1 + x⁴)...(1 + x^{2^j})...(1 + x^{2ⁿ})

This result that can be proven by induction on n.

We use the right side of the above identity for computation. At the start of the j^{th} iteration, where $j \ge 0$, variables *prod* and *term* are given by

$$term = x^{2^{j}}$$

$$prod = \prod_{0 \le i \le j} (1 + x^{2^{i}})$$

For j = 0, we get term = x and prod = 1. The iterative step is:

term := term * term || prod := prod * (1 + term)

This iterative structure is easily implemented in hardware. Each iteration computes *term* and *prod* independently.

Note: Another possibility is to first compute x^{2^j} , for all j, 0 < j < n, in n steps, each step involving one multiplication. Next, compute $1 + x^{2^j}$, for all j in one step. Then compute the product of these terms in log n steps.