
Enumerating the Strings of a Regular Expression
Jayadev Misra

8/29/2000; revised 9/26/2003; revised 8/15/2011

We develop a program in Haskell to enumerate the strings of a regular ex-
pression in increasing order; the order is defined below.

Let z be a finite alphabet whose symbols are totally ordered. For finite
strings s and t over z, s is smaller than t, written s < t, means either (1)
the length of s is smaller than that of t, or (2) the lengths of s and t are
equal and s is lexicographically smaller than t, based on the ordering over z.
Henceforth, all strings are finite.

Let r be a regular expression over z. We enumerate the strings of r in
increasing order (with respect to <). A regular expression r is defined as
follows: (1) r = φ; then r denotes the empty set, (2) r = NIL; then r
contains only the null string, (3) r = ′a′, for some symbol a of the alphabet;
then, r contains ‘‘a’’ as the only string, or for regular expressions u and
v, (4) r = (u | v); then r contains the union of the strings in u and v
(5) r = (u · v); then r contains all the strings obtained by concatenating a
string of u with one of v, or (6) r = (u∗); then r contains all the strings
obtained by concatenating strings of u any finite number of times (including
0 times, which yields the null string). For the first three cases, enumeration
is straightforward. We discuss the remaining cases next.

1 Enumeration Problem

Let enum be a function such that for a regular expression r, enum(r) is the
ordered list of strings denoted by r. For r of the form u | v, we apply enum
to both u and v and then merge the two lists to obtain enum(r), i.e., using
an infix operator +++ for function merge that is yet to be defined,

enum(u | v) = (enum u) +++ (enum v)

Note: Henceforth, we use the Haskell convention that function application is
left-associative, and it has the highest binding power. Therefore, parenthesis
around the arguments can be eliminated in a number of cases.

For a regular expression of the form u · v, we use a function prod, written
as an infix operator ***, to concatenate pairs of strings from the argument
lists.

1

enum(u · v) = (enum u) *** (enum v)

Finally, for a regular expression of the form u∗, we apply a function
closure.

enum(u∗) = closure (enum u)

The remaining task is to define merge, prod, and closure, which we do
next. Functions merge and prod have two arguments each; each argument is
an ordered list of strings and the result is an ordered list of strings. Function
closure has a single argument which is an ordered list of strings and its result
is an ordered list of strings.

2 merge, prod, closure

For comparisons of strings, we define a metric on a string as follows. Two
strings can then be compared by lexicographically comparing the correspond-
ing metrics.

metric x = (length x, x)

2.1 Definition of merge

Function merge has two ordered lists of strings, xs and ys, as arguments;
its result is an ordered list obtained by merging xs and ys. There are no
duplicates in the resulting list provided each of xs and ys is duplicate-free.
(The Haskell notation xs@(x:xt) denotes a list xs whose first element is x

and the remaining part is the list xt.)

(+++) :: [String] -> [String] -> [String]

[] +++ ys = ys

xs +++ [] = xs

xs@(x:xt) +++ ys@(y:yt) =

case compare (metric x) (metric y) of

LT -> x : (xt +++ ys)

EQ -> x : (xt +++ yt)

GT -> y : (xs +++ yt)

2

2.2 Definition of prod

Function prod has two ordered lists of strings, xs and ys, as arguments; its
result is an ordered list obtained from the concatenations of pairs of strings,
from xs with those from ys. There are no duplicates in the resulting list
provided each of the argument lists is duplicate-free.

(***) :: [String] -> [String] -> [String]

[] *** _ = []

_ *** [] = []

xs@(x:xt) *** ys@(y:yt)

= (x ++ y): ((map (x ++) yt) +++ (xt *** ys))

The last case needs some explanation. The two argument lists are (x:xt)
and (y:yt); the arguments are also denoted by xs and ys, respectively. Since
xs and ys are assumed to be ordered, x is the smallest string in xs and y in ys.
Hence, x ++ y is the smallest string in xs *** ys, from the monotonicity of
concatenation in both of its arguments. The remaining strings in the result
list are of two kinds: (1) those that use x as part of a concatenation, i.e., the
strings resulting from concatenating x with the strings in yt, and (2) those
that do not, namely xt *** ys. The strings in (1) are ordered because yt is
ordered. And, those in (2) are ordered inductively. Therefore, merging them
results in a single ordered list.

2.3 Definition of closure

Function closure applied to an ordered list of strings, xs, creates finite con-
catenations of all the strings in xs. Consider three cases (in the following ""

is the null string): (1) []∗ = [""], (2) ("": xs)∗ = xs∗, and (3) if xs has no
null string, then xs∗ = "": (xs *** xs∗). Note that the order in which
the three cases are written matters; in the last case, xs is a list which does
not contain the null string.

closure :: [String] -> [String]

closure[] = [""]

closure ("": xt) = closure xt

closure xs = (""): (xs *** (closure xs))

3

3 The Complete Haskell program

The following program, written in Haskell, uses exactly the same code ex-
cept for minor syntactic differences. First, we define regular expressions,
Rexp, over a type z. We use infix operators :| and :. for alternation and
concatenation.

-- Define concatenation and alternation to be associative.

-- concatenation has higher binding power than alternation.

infixr 5 :|

infixr 6 :.

data Rexp z =

Phi -- empty language

| Nil -- language containing null string

| Single z -- symbol from the alphabet

| (Rexp z) :| (Rexp z)-- alternation

| (Rexp z) :. (Rexp z)-- concatenation

| Star (Rexp z) -- Kleene closure

The result of function enum is an ordered list of strings of a regular ex-
pression.

enum :: (Ord z, Show z) => Rexp z -> [String]

enum z = case z of

Phi → [] -- empty language

Nil → [""] -- language containing null string only

Single x → [show x] -- convert x to string

x :| y → (enum x) +++ (enum y)

x :. y → (enum x) *** (enum y)

Star x → closure (enum x)

The following functions —merge, prod, and closure— are as given before.

(+++) :: [String] -> [String] -> [String]

[] +++ ys = ys

xs +++ [] = xs

xs@(x:xt) +++ ys@(y:yt) =

4

case compare (metric x) (metric y) of

LT -> x : (xt +++ ys)

EQ -> x : (xt +++ yt)

GT -> y : (xs +++ yt)

(***) :: [String] -> [String] -> [String]

[] *** _ = []

_ *** [] = []

xs@(x:xt) *** ys@(y:yt)

= (x ++ y): ((map (x ++) yt) +++ (xt *** ys))

closure :: [String] -> [String]

closure[] = [""]

closure ("": xt) = closure xt

closure xs = (""): (xs *** (closure xs))

Acknowledgment The Tuesday Afternoon Club, under the guidance of
Edsger W. Dijkstra, read and commented on an earlier draft of this manuscript.
Pete Manolios developed a program in ACL-2 based on the earlier draft. The
current version is helped by several features of Haskell, the type definition
mechanism and lazy evaluation, in particular. I am indebted to Doug McIl-
roy who provided me with the merge and prod functions, and explored a
number of other solutions with me; the version of prod shown here is slightly
revised. Ham Richards has helped me with the intricacies of Haskell.

5

