
Assigning Coordinates to Events:

Solving Combinatorial problems using Discrete

Event Simulation

David Kitchin, John Thywissen, Jayadev Misra∗

University of Texas at Austin

November 1, 2011

1 Introduction

This paper is inspired by the “event list” mechanism in discrete event simu-
lations. We argue that descriptions of many combinatorial algorithms can be
simplified by casting the solution in terms of processing events according to
some order. We propose generalizations of the event list mechanism, and show
their applications in problems from graph theory and computational geometry.

Discrete event simulation is used to mimic the real time behavior of a physical
system. Typically, the physical system generates “events” at specific times, and
the execution of an event may cause other events to happen in the future. Many
combinatorial problems have the same structure as discrete event simulation in
that they generate events, the events have to be processed in some order, and
the processing of events may generate yet more events (to be processed later).
Explicit real-time does not play a role in combinatorial problems, but processing
of events imposes an order akin to the real-time order. Such problems can be
solved by specifying (1) the order in which the events have to be processed,
and (2) the steps needed for processing each event, where the steps may also
generate new events. The management of the data structure for events, the
event list, may be delegated to a standard run-time routine called the “event
list manager”. Structuring the solution in such a manner often simplifies the
algorithm description by eliminating book keeping, as we show with several
examples in this paper.

Structure of the paper We describe the allowable operations on event list
in the next section. These operations are slightly more general than what is
normally assumed in discrete event simulations. We show solutions to a number

∗This author is partially supported by National Science Foundation grant CCF-0811536.

1

of combinatorial examples in Section 3. We conclude with some remarks on this
approach in Section 4.

These ideas have been implemented in a concurrent programming language,
Orc [8, 5], designed by the authors and their co-workers.

2 Event List

The combinatorial algorithms we consider consist of processing a sequence of
events. At any point, there is a set of events scheduled for future processing;
we call this set the event list. Initially, some set of events is scheduled. The
scheduled events are processed according to some order as long as there is some
event in the event list; a processing step may schedule additional events.

In discrete event simulations each event has an associated real time, the time
of occurrence of the event in the physical world. For combinatorial problems, we
dispense with the notion of “time”. Instead, we associate a coordinate with each
event. The coordinate may be non-numeric. The only requirement is that the
coordinates be totally-ordered, so that we can identify an event of the smallest
coordinate among the scheduled events. The type of the coordinate and a total
order over that type has to be specified for each problem. During execution of
an algorithm, the current coordinate is the coordinate of the last event whose
processing has begun or been completed; it is undefined if no event has yet been
processed.

There are three operations on event list.

1. schedule(E) where E is a finite, non-empty set of events, is added to the
event list. Coordinate of every event in E is at least as large as the current
coordinate whenever the current coordinate is defined.

2. await(x) removes and returns an event x of the smallest coordinate, ac-
cording to the given total order, from the event list. The coordinate of
x becomes the current coordinate. Additionally, the value of await(x) is
itself boolean, true iff this is the first call to await or the coordinate of
x differs from the last coordinate returned by await . Thus, await(x) is
false if the value of current coordinate does not change. If the event list
is empty, await(x) never completes.

3. nonempty returns a boolean, true iff there is some scheduled event.

The standard implementation of the event list uses a priority queue. There
may be more efficient implementations for specific problems by exploiting the
properties of the problem. For example, in breadth-first search (Section 3.5),
we show how the event list can be maintained more efficiently.

3 Examples

Notation Henceforth, we write an event as a tuple whose first component is
its coordinate. The coordinate may be the only component for events in some

2

problems.

3.1 Minimum Spanning Tree

Most greedy algorithms can be described in terms of event processing. We
consider Kruskal’s algorithm [6] for the minimum spanning tree problem.

For a connected, finite, undirected graph, a spanning tree T is a subset of
edges so that every node is incident on some edge in T . Further, given that each
edge in the graph has a finite positive weight, it is required to find a spanning
tree whose combined edge weight is minimum. A well-known algorithm, due
to Kruskal [6], starts with T as an empty set, and then processes the edges in
order of increasing weights, adding an edge to T provided it does not create a
cycle. The algorithm terminates when T has n− 1 edges where n is the number
of vertices.

In the program below, an event corresponds to processing an edge, and the
associated coordinate is the edge weight.

schedule({(w, e)| e is an edge and w is its weight});
T := {};
while |T | 6= n− 1 do

await(w, e);
if T ∪ {e} has no cycle then T := T ∪ {e}
else skip

od

No event is added to the event list in this example; so, the only benefit of
the given program is that it avoids an explicit sorting step by delegating that
responsibility to the event list manager.

3.2 Huffman Coding

Given a finite non-empty set of positive weights, consider a binary tree where
each weight is associated with a terminal node. The weighted path length to
a terminal node is the length of the path times the associated weight, and the
weight of the tree is the sum of weighted path lengths over all terminal nodes.
Huffman’s algorithm constructs a tree of the smallest weight, as follows.

Let W be the set of weights. Assign each weight to a distinct tree node. As
long as W has more than one element, remove the two smallest elements, x and
y, create a node with weight x+y that is the parent of the nodes corresponding
to x and y, and add x + y to W .

In the program below, we do not construct the tree, but in each step output
(x, y), the weights of the nodes that acquire a common parent in the step. The
event list contains the set of weights that do not yet have a parent. Let n be
the size of the event list; the program terminates when n = 1, i.e., there is a
single node, root, without parent.

3

schedule(W); n := |W |;
while n 6= 1 do

await(x); await(y); output(x,y); schedule({x + y});
n := n− 1

od

The algorithm avoids all book-keeping associated with the traditional al-
gorithm. It has a property that can be exploited for slight improvement in
performance. The successive weights that are scheduled in the loop are mono-
tonic. Therefore, the weights can be grouped into two sets, the original set W
corresponding to the terminal nodes of the tree, and set W ′ corresponding to the
internal nodes which are scheduled in the loop. Elements of W ′ are produced
in order. If W is sorted initially, then removing the elements in order from W
and W ′ amounts to merging these two sorted lists. Merge of two sorted lists
can again be structured as processing events from an event list, as shown next.

3.3 Merging sorted sequences

Given are two sequences sorted in ascending order. It is required to merge
the sequences and output the elements in ascending order. We use processing
an element as an event and the value of the element as its coordinate. The
elements in the sequences need not be numeric. In the first version, all elements
from both sequences are output, thus, possibly, producing duplicates. Below,
read(x, i) reads the next value from sequence i, 1 ≤ i ≤ 2, and stores it in
variable x.

read(x, 1); read(y, 2); schedule({(x, 1), (y, 2)});
while nonempty do

await(t, i); output(t); read(x, i); schedule({(x, i)})
od

Note that the event list length never exceeds two, because at most one
element from either list is scheduled at any point. The program is easily modified
to accommodate merging any finite number of sorted sequences.

The following variation outputs only distinct elements, avoiding duplicates.

read(x, 1); read(y, 2); schedule({(x, 1), (y, 2)});
while nonempty do

if await(t, i) then output(t); read(x, i); schedule({(x, i)})
else skip

od

3.4 A Problem attributed to Hamming

The following problem appears in Dijkstra [3]; he attributes the problem to
Hamming. It is required to output integers of the form 2i×3j×5k in increasing
order, for all non-negative integer values of i, j and k. Dijkstra’s solution uses

4

a variable length array in which the outputs are stored, and which can be used
to compute the next number to be output. Here, we eliminate the required
book-keeping using the event list to store the values that are yet to be output.
For every value x that is output, 2× x, 3× x and 5× x are scheduled for future
output. Duplicate values are not output, using a technique employed in merging
sorted sequences (Section 3.3). The coordinate of an event is its magnitude.

schedule({1});
while true do

if await(x) then output(x); schedule({2× x, 3× x, 5× x})
else skip

od

3.5 Breadth-first Search

Consider a finite directed graph that has a special node called called root. The
level of a node is defined as the length of the shortest path from root to the
node; thus, root is at level 0, and any other node has level one higher than its
lowest-level predecessor. Breadth-first search visits the nodes by their levels.
We show a program that schedules nodes for visit based on their levels. The
invariant of the program is: (1) every scheduled node is marked, and (2) no
node is scheduled more than once. An event here is of the form (h, u) where u is
a node and h is its level; processing of (h, u) visits u and schedules its unmarked
successors.

mark root; schedule({(0, root)});
while nonempty do

await(h, u);
visit u;
for each unmarked successor v of u:

mark v and schedule({(h + 1, v)});
od

It can be shown that the coordinates of nodes in the event list differ by at
most 1; the assertion holds vacuously at the start, and for a step in which node
u of coordinate h is processed, any scheduled node has level h or h + 1, and
only nodes of level h + 1 are added to the event list. Therefore, the event list
can be maintained as a simple queue where await(h, u) removes the element at
the head of the queue and schedule{(h + 1, v)} adds (h + 1, v) to the rear of
the queue. Using a standard event list manager has the limitation that such
optimizations can not be exploited.

3.6 Depth-first Search

As in breadth-first search, assume that we have a finite directed graph with
a special node called root. The program for depth-first search has the same
structure as that for breadth-first search in that the scheduled events are of the

5

form (h, u), where u is a node, but the coordinate h is more elaborate. Assume
that the label of a node is a unique symbol from an ordered alphabet. An event
corresponds to visiting a node, and the coordinate of event corresponding to
node u is a string consisting of concatenation of node labels along some path
to u. The coordinate of the root is the empty string, ε. For node u with
coordinate h, the coordinate of a successor node v is hi (that is h concatenated
with i), where i is the label of v. Comparing nodes by lexicographic order of
their coordinates arranges them in a depth-first search tree. Note the following
properties of lexicographic order: for string s and symbols x, y and z,

s < sx, x < y ⇒ sx < sy, x < y ⇒ sxz < sy

As in breadth-first search, the invariant of the program below is: (1) every
scheduled node is marked, and (2) no node is scheduled more than once.

mark root; schedule({(ε, root)});
while nonempty do

await(h, u);
visit u;
for each unmarked successor v of u with label i:

mark v and schedule({(hi, v)});
od

3.7 Shortest Path

We first show a concurrent solution to the well-known shortest path problem.
Dijkstra’s algorithm [2] is a sequential simulation of this algorithm.

It is required to find a shortest path from a source node to a sink node in a
finite directed graph in which each edge has a positive length. We will merely
record the length of the shortest path from source to sink; determining the
shortest path itself is a small extension of this scheme. We describe a real-time
concurrent algorithm in which each node records the shortest path length to it.

Imagine that the length of an edge is the amount of time taken by a light ray
to traverse that edge. First, source records 0, the length of the shortest path
to itself. Then it sends rays along all its outgoing edges simultaneously at time
0. On receiving a light ray along any of its incoming edges, a node records the
time and sends rays along all its outgoing edges immediately. It can be shown
that every path length to a node is eventually recorded by the node in order of
(non-decreasing) length. A node may stop its computation after recording its
first value, because only its shortest path may be included in the shortest path
to any other node. The computation is terminated as soon as sink records its
first value, which is the shortest path length to it.

The Shortest Path Program We implement the scheme described above.
An event corresponds to a light ray reaching a node, and the coordinate is the
associated path length to the node. A node gets marked when a light ray reaches

6

it for the first time. Then its shortest path is recorded and its neighbors are
scheduled. This is same as Dijkstra’s algorithm except that the book-keeping
is delegated to the event list manager. Below, d(u, v) is the length of the edge
from u to v.

all nodes are unmarked;
schedule({(0, source)});
await(h, u);
while u 6= sink do

if u unmarked then mark u;
for every unmarked successor v of u: schedule({(h + d(u, v), v)})

else skip;
await(h, u)

od ;
output(h)

It is simpler to write this algorithm in a concurrent style that mimics the
behavior of the light rays reaching the nodes concurrently; we have a very concise
description in the programming language Orc [7].

3.8 Plane-sweep algorithms in Computational Geometry

Plane-sweep is a powerful algorithmic technique in computational geometry.
Algorithms using plane-sweep can always be described in the proposed manner.
The advantage of such a description is that book-keeping aspects of plane-sweep
can be completely ignored. We sketch the outline of an algorithm, due to Bentley
and Ottman [1, 9], for enumerating the intersection points of a given set of line
segments in a plane.

Line Segment Intersections We are given a finite set of line segments in
a plane, where each segment is described by the pair of its end points. It is
required to enumerate the points of intersection of all pairs of segments. The
algorithm has the following salient features.

1. All end points and intersection points are processed in order of their x-
coordinates.

2. The algorithm maintains a list, A. The list is initially empty.

3. Processing a point may update A and create new intersection points.

We associate an event with each end point and intersection point. Point
(x, y) has coordinate x; assume that x-coordinates of all points are distinct.
Initially only end points are stored in the event list. At any step, the point with
the smallest x-coordinate is removed from the event list and processed, which
may cause intersection points to be added to the event list. The algorithm
terminates, because there are a finite number of end points and intersection
points, and each processing step terminates. The exact details of updating A

7

are not germane to the discussion here; it can be shown that all intersection
points are generated by the processing steps.

schedule({(x, y)| (x, y) is the coordinate of an end point});
while nonempty do

await(x, y)
compute intersection points S from A and (x, y);
schedule(S);
update A

od ;

4 Cancelling Events

Discrete event simulation allows removing events from the event list, i.e., can-
celling a scheduled event. We propose a fourth operation on the event list,
cancel(h) that cancels all (possibly 0) events whose coordinate is h.

The Eratosthenes sieve for computing prime numbers from 2 to N can now
be easily expressed.

schedule({j| 2 ≤ j ≤ N});
h := 1;
while h ≤ √

N do

await(h); output(h)
cancel({k × h| k > 1 and k × h ≤ N})

od

This example demonstrates one of the limitations of using a standard data
structure for a variety of problems. The running time of this algorithms, as-
suming a typical priority queue implementation of the event list, is O(n log n),
because each of the n items is removed from the event list either for output or
cancellation. By contrast, a doubly-linked data structure over the elements will
run in linear time because each removal then takes constant time.

5 Concluding Remarks

We have argued in this paper that casting certain combinatorial problems as
problems of event processing, with the events scheduled according to their co-
ordinates, often eliminates book keeping. The resulting programs have simpler
descriptions. For some problems, explicit book keeping may be more efficient;
for others, using a standard event list manager is adequate.

The algorithms we have described are all sequential. These algorithms may
often be described even more simply in a concurrent style; then, explicit schedul-
ing can be replaced by scheduling a thread in the future. We have successfully
applied this technique with concurrent programs in the Orc programming lan-
guage [8, 5, 4].

8

References

[1] J. L. Bentley and T. A. Ottman. Algorithms for reporting and counting
geometric intersections. IEEE Trans. on Computers, 28:643–647, 1979.

[2] E.W. Dijkstra. A note on two problems in connection with graphs. Nu-
merische Mathematik, 1:83–89, 1959.

[3] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[4] Jayadev Misra et. al. Orc language project. Web site. Browse at
http://orc.csres.utexas.edu.

[5] David Kitchin, Adrian Quark, and Jayadev Misra. Quicksort: Combining
concurrency, recursion, and mutable data structures. In A. W. Roscoe,
Cliff B. Jones, and Ken Wood, editors, Reflections on the Work of C.A.R.
Hoare, History of Computing. Springer, 2010. Written in honor of Sir Tony
Hoare’s 75th birthday.

[6] Joseph. B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical So-
ciety, 7(1):4850, Feb 1956.

[7] Jayadev Misra. Virtual time and timeout in client-server networks.
http://www.cs.utexas.edu/users/misra/VirtualTime.pdf.

[8] Jayadev Misra and William Cook. Computation orchestration: A basis for
wide-area computing. Software and Systems Modeling (SoSyM), 6(1):83–
110, March 2007.

[9] Franco P. Preparata and Michael Ian Shamos. Computational Geometry:
An Introduction. Springer-Verlag, 1985.

9

