
The single-source shortest path algorithm

Jayadev Misra

June 17, 2016

1 Introduction

Given is a directed graph in which each edge (x, y) has a positive length l(x, y).
(All the algorithms in this note are correct even when some edge lengths are
zero though the proofs are slightly more elaborate.) The length of a path is the
sum of the edge-lengths along that path. It is required to find the shortest path
from a given node, source, to another specified node. We describe an algorithm,
due to Dijkstra, that solves the shortest path problem in O(n2) steps where n
is the number of nodes. The algorithm finds the shortest path from source to
all nodes. Henceforth, path refers to a path from source.

We show two different developments of the same algorithm, the first based
on discrete event simulation and the second a more conventional treatment.

2 A Discrete Event Simulation Algorithm

Construct a fantasy algorithm to list all paths ordered by their lengths.
Nodes are autonomus and they operate in real time. They communicate

using light quanta, called photons. A photon carries a hop count with it. Let
node x receive (along an incoming edge) a photon with hop count n at time t;
then it records the triple (n, t, x) in a common ledger and sends photons with
hop counts n + 1 along each of its outgoing edges. A photon consumes l(x, y)
time units to travel from node x to y. Nodes take no time in recording in the
ledger nor sending and receiving photons. The procedure starts by having the
source receive a photon with hop count 0 at time 0. Observe that a typical
graph with cycles may have an infinite number of paths to some nodes, so the
procedure may never terminate and the ledger may become infinitely long.

We prove below that (n, t, x) is a ledger entry iff there is a path with n edges
of length t to x. For the shortest path problem a node may ignore all but the
first photon it receives. This is because if x receives photons at t and t′, t ≤ t′,
t represents as short, or even a shorter, path, and any successor z of x receives
photons at t+ l(x, z) and t′ + l(x, z), and t+ l(x, z) ≤ t′ + l(x, z). Also, the hop
count, which has been introduced to simplify the proof, may be ignored because
the number of edges in the shortest path is usually irrelevant.

1



Correctness The proof of the claim, that (n, t, x) is a ledger entry iff there is
a path with n edges of length t to x, is by induction on n. For n = 0 the only
path with 0 edges is the one from source to itself, which is given by the ledger
entry (0, 0, source). For n > 0,

there is a path with n edges of length t to x
≡ {graph theory}

for some predecessor y of x:
there is a path with n− 1 edges of length t− l(y, x) to y

≡ {induction}
for some predecessor y of x:
there is a ledger entry (n− 1, t− l(y, x), y)

≡ {x receives n at t, n > 0, iff
x has a predecessor y that receives n− 1 at t− l(y, x)}
there is a ledger entry (n, t, x)

Implementation outline The algorithm as described is concurrent, and runs
in real time in which processing steps by the nodes consume no time. Such algo-
rithms can be implemented using the classic discrete event simulation scheme.
We describe the simulation algorithm as it pertains to this problem.

Call the receipt of a photon an event and simulate the events in order of
their occurrence. Occurrence of an event may cause other events to happen in
the future, in this case receipt of a photon may cause sending of photons that
cause receipts of photons, i.e., events, in the future. Construct a set event queue
that includes all events (t, x), for x receiving a photon at time t, that are known
to happen in the future. Initially, the only known event is (0, source). A step
of simulation removes the next event that is known to happen, in this case the
entry (t, x) in the event queue that has the smallest time component t (break
ties arbitrarily), and processes it as follows. If event (t, x) corresponds to the
receipt of the first photon by x then (1) insert (t, x) in a set ledger, and (2)
since sending a photon to z causes the event (t + l(x, z), z) to happen in the
future add all such events to event queue. If (t, x) corresponds to the receipt of
a non-first photon by x, ignore it.

To determine if an event corresponds to the first photon, call a node lit if it
has already received a photon, unlit otherwise. The implementation outline:

event queue := {(0, source)};
every node is unlit;
while there is an unlit node do

remove (t, x) with the smallest t from event queue;
if x is unlit then

record (t, x) in the ledger and that x is now lit;
for every edge (x, z): insert (t + l(x, z), z) in event queue

endif

enddo

2



Exercises

1. Augment the program to compute the shortest path in addition to its
length.

2. Show that as long as there is an unlit node event queue is not empty. You
will have to use the fact that every node is reachable from source.

3. Derive an upper bound on the number of steps assuming that the simplest
procedure is used for removing entries from event queue.

4. Improve the last (insert) step by noting that if z is lit then the event will
be ignored in the future. Does this modification improve the number of
steps substantially?

3 Conventional Description of the Algorithm

We show a conventional development of the shortest path algorithm that is
identical to the implementation described in the previous section. Shortest
paths to all nodes are computed in order of their lengths. This is precisely the
order of the ledger entries in the previous section though it is not necessary to
read the that section to follow the rest of this note.

Let dx be the length of the shortest path to node x. Given the shortest path
values sorted in ascending order define x to have rank k if the position of dx is k
in this order (break ties arbitrarily); source has rank 0. Henceforth, a non-final
node on a path is any node except the final node.

Observation 1 The ranks of the nodes in any shortest path is an increasing
sequence. Consequently, the final node has the highest rank in any shortest
path.

Proof: Let x be a non-final node on a shortest path to some node. The segment
up to x is a shortest path to x because otherwise the segment may be replaced by
a shortest path to x, thus decreasing the entire path length. Let y be the node
following x on the path; such a node exists because x is non-final. The segment
lengths up to x and y are dx and dy, respectively, from the above arguments.
And dy = dx+l(x, y) because y follows x in the path. From l(x, y) > 0, dy > dx;
so y has rank higher than x.

The Algorithm The given observation suggests a way to determine the short-
est paths in order of ranks. source is of rank 0 and has a shortest path of length
0. Given all nodes of rank k or lower —call these nodes lit and the remaining
nodes unlit— compute the node of rank k + 1 as follows. For any x in unlit
let d′x be the length of the shortest path to node x using only nodes from lit as
non-final nodes, and d′x = ∞ if there is no such path. From the observation,
node z with the minimum value of d′ in unlit has rank k + 1 and dz = d′z.

3



Initially lit = {}, d′source = 0 because it has no non-final node in its shortest
path and d′x = ∞, for all other x because they need to have at least source as
a non-final node. After finding z, the node of the next rank, add it to lit. Then
recompute d′x for all x in unlit as follows. The paths to x that use non-final nodes
from lit are of two kinds: (1) the ones that do not include z have the shortest
path length d′x, and (2) the ones that include z have z as the penultimate node,
from the observation; so the shortest such path length is d′z + l(z, x). Update
d′x to min(d′x, d

′
z + l(z, x)).

Abstract Program

unlit := all nodes; d′source := 0; d′x :=∞, for all x, x 6= source;
while there is a node in unlit do

let z in unlit be such that d′z = min{d′x | x ∈ unlit};
dz := d′z; unlit := unlit− {z};
d′x := min(d′x, d

′
z + l(z, x)), for all x, x ∈ unlit

enddo

4


