
Computing the Spans in a sequence
Jayadev Misra

1/22/2001

The following problem has been treated as an example in a book by Goodrich
and Tamassia [1, section 3.5]. Given is a sequence of integers, p0, . . . , pN−1.
Henceforth, assume that p0 exceeds all other pis. For each i, 1 ≤ i < N , define
its span s.i to be the length of the longest segment ending at i whose elements
are at most pi in value. That is, pi−s.i > pi and for all k, i−s.i < k ≤ i, pk ≤ pi.
Since, by assumption, p0 exceeds pi, 1 ≤ i < N , s.i is well defined. Henceforth,
the range of i is given by 1 ≤ i < N unless stated otherwise.

Define f.i to be i− s.i; it is the largest index preceding i such that pf.i > pi.
That is,

(F1) f.i < i,
(F2) pf.i > pi, and
(F3) 〈∀k : f.i < k ≤ i : pk ≤ pi〉

Since p0 exceeds all pis, f.i is well defined for all i. In this note, we suggest a
linear algorithm for computing all f.is (and, hence, all s.is).

Index f.i is strictly smaller than i (from F1); hence, f induces a tree structure
over the indices i, 0 ≤ i < N : the root is 0 and f.i is the father of i. The
algorithm is based on the following observation. For any i, 0 ≤ i < N , define
the sequence of ancestors of i to be

f0.i, f1.i, f2.i, . . . 0,

where f0.i is i and f t+1.i = f.(f t.i). Note that an index is its own ancestor,
and the sequence of ancestors is strictly decreasing, from (F1).

Observation Let j be the first ancestor of i − 1 such that pj > pi. Then
f.i = j.

Proof: We show that j satisfies the definition of f.i, i.e., substituting j for f.i
in (F1, F2, F3) we show:

1. j < i,
2. pj > pi, and
3. 〈∀k : j < k ≤ i : pk ≤ pi〉.

1. Proof of j < i:
We show that all ancestors of i − 1 precede i, i.e., f t.(i − 1) < i for
all t, whereever f t.(i − 1) is defined. Proof is by induction on t. First,
f0.(i − 1) < i because f0.(i − 1) = i − 1. Next, suppose f t+1.(i − 1) is
defined. From the induction hypothesis, f t.(i − 1) < i and, from (F1),
f t+1.(i− 1) = f.(f t.(i− 1)) < f t.(i− 1); hence, we have f t+1.(i− 1) < i.

2. Proof of pj > pi: From the definition of j.

1



3. Proof of 〈∀k : j < k ≤ i : pk ≤ pi〉:
Any k smaller than i, k 6= 0, lies between two adjacent ancestors of i− 1.
That is, for all k, j < k < i, f.s < k ≤ s, for some ancestor s of i− 1.

For k = i, pk ≤ pi is immediate. Next, we establish that pk ≤ pi for any
k, j < k < i.

pk ≤ ps , use f.s < k ≤ s and substitute s for i in condition (F3)
ps ≤ pi , definion of j:

value at any ancestor of i− 1 prior to j is at most pi,
s is such an ancestor

pk ≤ pi , from above two 2

Program The following program is immediate from the observation.

i := 1;
while i < N do

{compute f.i using the observation}
j := i− 1;
while pj ≤ pi do j := f.j enddo ;
{pj > pi}
f.i := j; i := i + 1

enddo

Analysis of the Execution Time We show that the execution time of this
algorithm is linear in N . The outer loop is executed N times; hence the two
assignment statements in the outer loop consume time proportional to N . Next,
we count the number of assignments executed in the inner loop. Note that the
number of tests executed in the inner loop is one more than the number of
assignments executed in it, for each iteration of the outer loop; so, the total
number of executed tests, pj ≤ pi, is N more than the number of executed
assignments j := f.j.

To count the number of executed assignments in the inner loop, associate an
integer cost with each index. Initially, all indices have zero cost. The assignment
j := f.j is accompanied by increasing the cost of j by 1. Then, the number of
executions of j := f.j is the sum of all costs. We show that

Claim: cost of any index is at most 1.

Therefore, the number of executions of j := f.j is at most N .
We prove the claim by first annotating the program with assertions. In the

annotation predicate q(k) stands for

all ancestors of k have zero cost.

We do not show the annotation for the inner loop; it is discussed afterwards.
An invariant of the outer loop —cost of i is zero— is not proven explicitly; it
follows from the initial condition (all costs are zero) and that costs are increased
in an iteration only for indices below i.

2



{q(0)}
i := 1;
{q(i− 1)}

while i < N do

{q(i− 1)}
j := i− 1;
{q(j)}

while pj ≤ pi do increase cost of j by 1; j := f.j enddo ;
{q(j)}
{cost of i is zero, q(j)}

f.i := j;
{q(i)}

i := i + 1
{q(i− 1)}

enddo

Next, we show that q(j) is an invariant of the inner loop. As the annotation
shows, the cost of any j is at most 1, thus proving the claim.

{q(j)}
{j has zero cost, q(f.j)}

increase cost of j by 1; j := f.j
{j’s cost is 1, q(j)}

Program for Computing the Spans The following program can be used
to compute the spans s.i directly.

s.0 := 1;
for i := 1 to N − 1 do

j := i− 1;
while pj ≤ pi do j := j − s.j enddo ;
s.i := i− j

endfor

References

[1] Michael T. Goodrich and Roberto Tamassia. Data Structures and Algorithms
in Java. John Wiley and Sons, Inc., 1998.

3


