
Permutations Generated by a Stack Machine
Jayadev Misra

10/11/98

Let S be an infinite stack. An output string is computed as follows from an
input string. In each step either the next input symbol is added to the stack,
or the top of the stack is moved to the output. Let x → y denote that y is
a possible output string given x as the input string. We explore some of the
properties of → .

ε → ε
x → x′, y → y′ ⇒ axy → x′ay′.

The second rule states that given an input string axy the item a appears in
the output at some point. Prior to output of a, item a is at the bottom of the
stack and hence, some portion of the input, x, is converted to x′ and appended
to the output. Following the output of a, the stack is empty and the remaining
input sequence y is converted to y′.

We assume henceforth that the output is a permutation of the input, which
can be proved from the rules. Symbols a, b are in the alphabet; all other symbols
are strings over the alphabet, possibly empty.

Lemma 1: x → x′, y → y′ ⇒ xy → x′y′.

Proof: by induction on x. For empty x the result is immediate. For the
inductive case, let x be of the for auv and x′ be u′av′ where u → u′ and
v → v′.

xy
= {x = auv}

au(vy)
→ {from v → v′, y → y′ by induction vy → v′y′;

rule 2: u → u′, vy → v′y′}
u′av′y′

= {x′ = u′av′}
x′y′

Lemma 2: y → y′, z → z′ ⇒ xyz → y′xz′, where x is the reverse of x.

Proof: By induction on x. For empty x the result follows from lemma 1. For
x of the form au:

xyz
= {x = au}

auyz
→ {uy → y′u, by induction; z → z′; apply rule 2}

1



y′uaz′

= {ua = x}
y′xz′

Corollary 1: x → x, setting y, z to ε in Lemma 2.

Corollary 2: x → x.
Proof: First show a → a from definition. Next apply lemma 1 to show
ax → ax, by induction.

Corollary 3: y → y′ ⇒ xyz → xy′z.
Proof: Apply corollary 2 and lemma 1.

Note that → is not symmetric: cab → abc, though abc 6 → cab, which
can be seen by appealing to the stack machine.

Given an input string x and an alleged output string y, it can be determined
if y is a possible output given x as input. The algorithm employs a stack. In
each step: if the stack is empty or the top element of the stack differs from
the next output symbol then do an input step (read the next input symbol and
push it onto the stack), else (the stack is non-empty and top element of the
stack matches the next output symbol) then remove the top symbol of the stack
and move to the next output symbol.

2


