DEPARTMENT OF COMPUTER SCIENCES —\

Computation Orchestration

Jayadev Misra

Department of Computer Science
University of Texas at Austin

Email: m sra@s. ut exas. edu
web: htt p: //wwv. cs. ut exas. edu/ user s/ psp

Univ. of Texas
TECS Week, 2005

N /

DEPARTMENT OF COMPUTER SCIENCES —\

Compose basic computing elements called Sites. A site is a

e function: Compress MPEG file
method of an object: LogOn procedure at a bank
monitor procedure: read from a buffer
web service: get a stock quote
transaction: check account balance

distributed transaction: move money from one bank to another

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Example: Airline |

e Contact two airlines simultaneously for price quotes.

e Buy ticket from either airline if its quote is at most $300.
e Buy the cheapest ticket if both quotes are above $300.
e Buy any ticket if the other airline does not provide a timely quote.

e Notify client if neither airline provides a timely quote.

-)

-

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Example: workflow I

An office assistant contacts a potential visitor.

The visitor responds, sends the date of her visit.

The assistant books an airline ticket and
contacts two hotels for reservation.

After hearing from the airline and any of the hotels:
he tells the visitor about the airline and the hotel.

The visitor sends a confirmation which the assistant notes.

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Example: workflow, contd. |

After receiving the confirmation, the assistant

e confirms hotel and airline reservations.
e reserves a room for the lecture.
e announces the lecture by posting it at a web-site.

e requests a technician to check the equipment in the room.

-)

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Wide-area Computing |

Acquire data from remote services.

Calculate with these data.

Invoke yet other remote services with the results.

Additionally

Invoke alternate services for failure tolerance.

Repeatedly poll a service.

Ask a service to notify the user when it acquires the appropriate data.
Download an application and invoke it locally.

Have a service call another service on behalf of the user.

- J

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ The Nature of Distributed Applications |

Three major components in distributed applications:

Persistent storage management
databases by the airline and the hotels.
Specification of sequential computational logic
does ticket price exceed $300?
Methods for orchestrating the computations

contact the visitor for a second time only after hearing from the airline
and one of the hotels.

We look at only the third problem.
N\ J

DEPARTMENT OF COMPUTER SCIENCES —\

‘ A new kind of assignment |

x:c f

where z is a variable and f is an Orc expression.

Evaluation of f may
start threads
yield zero or more values.

Assign the first value to x.

N /

-

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Simple Orc Expression I

CNN is a news service, d a date. Download the news page for d.

z:€ CNN(d)

e Side-effect: Book ticket at airline A for a flight described by c.

r:€ A(c)

The returned value is the price and the confirmation number.

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Sites I

A site may not respond.

Its response at different times (for the same input) may be different.

A site call may change states (of external servers) tentatively or
permanently.

Tentative state changes are made permanent by explicit commitment.

N

UNIVERSITY OF TEXAS AT AUSTIN

‘ Notation I

e No arithmetic or logic capability in Orc.

e Can'twrite u+wv or zVy.
Write add(u,v) and or(z,y), where add and or are sites.

e Convention: Write u+ v and z V y.
Assume that a compiler converts these to add(u,v) and or(z,y).

DEPARTMENT OF COMPUTER SCIENCES —\

10

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Some Fundamental Sites I

let(z,y,---): returns a tuple of the argument values.
Rtimer(t): integer ¢, t > 0, returns a signal ¢ time units later.
Signal returns a signal immediately. Same as Rtimer(0).

if (b): boolean b,

returns a signal if b is true;
remains silent if b is false.

. _

UN|VERS|TY OF TEXAS AT AUST|N ___|] 11

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Composition Operators |

e CUNN >z> Email(address,x) Sequencing

e CNN | BBC Symmetric composition

e (Email(address,x) where z:c (CNN | BB(C))
Asymmetric composition

N R/

-

15

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Syntax |

FE € Expression Name
M € Site

x € Variable

p € Parameter

g € Expression ::=
0 Zero expression
M (px) Site call
E (px) Expression call
f >x>g Seqguential Composition
flg Symmetric Parallel Composition
f where z:€ ¢ Asymmetric Parallel Composition

__

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Examples |

Convention: >z> without z IS > .

Precedence of binding powers: where, € , |, >

N(z)

M > N(x)

M su> N(u)

F(z,y) » N(u)

(M > 0 | {N(x)where x:c R | N(y)})

N R/

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Site and Expression Call |

e Site call M(x): Call M if x is defined. Expression value is the

response from M.

Expression call: Similar to function call; may return many values.

UN|VERS|TY OF TEXAS AT AUST|N ___|] 15

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Sequencing |

e M s N:Call M, after hearing from M call N.
Expression value is the response from N.

Rtimer(1) > Email(address, message)
Rtimer(1) > Rtimer(1)
Email(addressl, message) > Email(address2, message) > Notify

e M >zx> R(z): Passthevalue from M in z

CNN s>z> Email(address, x)
Discover(c) >m> Apply(m,y)

> IS associative. >z> Isright associative.

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Symmetric composition using | |

e M | N: parallel threads call M and N. Two possible values.

e f | g:parallelthreads call f and g¢. Stream of values from each,
merged in time-order.

Example:

CNN | BBC

M | M

(M > N) [(M > R)

if (b) > M | if(=b) > N

. _

UN|VERS|TY OF TEXAS AT AUST|N ___|] 17

DEPARTMENT OF COMPUTER SCIENCES —\

(M | N) >R

Create two threads to evaluate M and N . Call R for each result.

N

R R

Figurel: (M | N) > R

{Email(addressl, message) | Email(address2, message)} > Notify

Double notification.

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘f >x>g|

Example: f >z> g, where f producesvalues 0, 1 and 2.

0 1 2
x=0 x=1 X=2
M(x)

M(X) M(X)

Figure 2: Computation of f >z> M(xz)

N R/

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Asymmetric parallel composition: {f where x:€ ¢} |

e Evaluate f and g in parallel.

7

e When g returns a result, assign the value to = and terminate g.
e Any site call in f which does not name z can proceed.
e A site calls which names =z waits until x gets a value.

e Values produced by f are the values of {f where z:c g¢}.

- __

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Pruning the computation |

(CNN | BBC) >z> Email(address,)
May send two emails.

To send just one email:

{Email(address,z) where x:¢ (CNN | BBC)}

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

Use

{{let(u,v) > Notify
where
u:€ Email(addressl, message)}
where
v:e Email(address2, message)}

Adopt the notation:

{let(u,v) > Notify
where
u:e Email(addressl, message)
v:e Email(address2, message)}

-

‘ Notify after both respond |

{Email(addressl, message) | Email(address2, message)} > Notify

UNIVERSITY OF TEXAS AT AUSTIN

22

DEPARTMENT OF COMPUTER SCIENCES —\

‘Constant 0 I

0 Is a site which never responds.

Example: send an email but do not walit for its response:

{Email(addressl, message) > 0 | Notify}

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Expression Definition |

Asynch(M,N) A M > 0 | N

Metronome A Signal | Rtimer(1) > Metronome
BM (0) A O
BM(n+1) A S | R > BM(n)
S R
S R

Figure 3: Metronome

N R/

-

‘ Example of Expression call |

Query returns a value (different ones at different times).
Accept(x) returns z if x is acceptable.

Produce all acceptable values by calling Query at unit intervals
forever.

RepeatQuery A Metronome > Query >x> Accept(x)

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

25

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Some Fundamental Sites I

let(z,y,---): returns a tuple of the argument values.
Rtimer(t): integer ¢, t > 0, returns a signal ¢ time units later.
Signal returns a signal immediately. Same as Rtimer(0).

if (b): boolean b,

returns a signal if b is true;
remains silent if b is false.

. _

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Small Examples |

e Call site M four times, at unit time intervals.

M | Rtimer(l) > M | Rtimer(2) > M | Rtimer(3) > M
e Time-out: set z to M’s response before ¢, 0 after t¢.
z:€ M | Rtimer(t) > let(0)
e Receive N'sresponse asap, but no earlier than 1 unit from now.
DelayedN A {Rtimer(1l) > let(u) where wu:e N}

e Call M, N together. If M responds within one unit, take its
response. Else, pick the first response.

r:€ M | Delayed N
- __

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Recursive definition with time-out I

Call a list of sites.

Count the number of responses received within 10 time units.

tally([]) A let(0)
tally(z : zs) A
{u+v
where
we x > let(l) | Rtimer(10) > let(0)
v:e tally(xs)}

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Sequential Computing |

o (S;T)is (S>T)

° if b then S else T

if (b) > S | if(=b) » T
o while b do x:= S(x)

loop(x) A if(b) > S(x) >y> loop(y) | if (=b) » let(x)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Kleene Star I

e For agiven z, to produce the sequence of values
x, M(z), M(z) >y> M(y), M(z) >y> M(y) >z> M(z), ...
Mstar(z) A let(x) | M(x) >y> Mstar(y)

e To produce the same sequence of values without =z, i.e.,
M(z), M(z) >y> M(y), M(z) >y> M(y) >z> M(z), ...

Mplus(z) A M(x) >y> (let(y) | Mplus(y))

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Arbitration I

In CCS: a.P + 3.Q

In Orc:

if (b) > P | if(=b) » @
where
b:c Alpha > let(true) | Beta > let(false)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Time-out I

Return (z,true) if M returns z before ¢, and (—,false) otherwise.

let(z,b)
where
(z,b):€ M >x> let(z,true) | Rtimer(t) >xz> let(x,false)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Fork-join parallelism |

Call M and N In parallel.

Return their values as a tuple after they both respond.

{ let(u,v)
where u:c M
vie N

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Screen Refresh I

Get: screen image, keyboard input, mouse position every time unit.

Call Draw with this triple.

Metronome
> { let(i, k,m)
where i :€ Image
k :€ Keyboard
m:€ Mouse

}

>r> Draw(z)

N
]

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Barrier Synchronization |

Synchronize M s fand N > g:

f and g start only after both M and N complete.

Rendezvous of CSP or CCS; M and N are complementary actions.

{ let(u,v)
where w:e M
vie N}
> (f | 9)

To pass values from M and N to f and g, modify last line:

>(u,v)> (f | 9)

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Interrupt handling |

e Orc statement can not be directly interrupted.

e Interrupt site: a monitor.
e Interrupt.set: to interrupt the Orc statement

e Interrupt.get: responds after Interrupt.set has been called.
z:€ f
Is changed to

z:€ f | Interrupt.get

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Interrupt; contd. |

Determine if there has been an interrupt:

callM A
(let(z,b)
where

(z,b):€ M >x> let(z,true) | Interrupt.get >z> let(x,false)
)

Process Interrupt:

callM
>(2,0)>
{ if(b) > “Normal processing with value z”
| if (—b) > “Interrupt Processing” }

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Parallel or I

Let sites M and N return booleans. Compute their parallel or.

{if (z) | of(y) | or(z,y)
where
r.e M
y:€ N}

Return just one value.

{let(z)
where
z€ if(z) | if(y) | or(z,y)
xe M
y:€ N}

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Airline quotes: Application of Parallel or |

Contact airlines A and B.

Return any quote if it is below ¢ as soon as it is available,
otherwise return the minimum quote.

threshold(x) returns z if = < c; silent otherwise.

{threshold(x) | threshold(y) | Min(z,y)
where
rc A
y:€ B}

. _

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Processes I

Run a dialog with the client.
Forever: client gives an integer; Process determines if it is prime.

Use channel tty: tty.get and tty.put are sites.

Dialog A
tty.get >T >
Prime?(x) >b>
tty.put(b) >
Dialog

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Refinement of Dialog |

The client specifies the communication channels.

Dialog(p,q) A

p.get >T >
Prime?(x) >b>
g.put(b) >

Dialog(p, q)

N R/

UN|VERS|TY OF TEXAS AT AUST|N ___|] 41

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Typical lterative Process I

Forever: Read =z from channel ¢, compute with 2z, output result on e:

P(c,e) A c.get >z> Compute(x) >y> e.put(y) > P(c,e)

Process (network) to read from both ¢ and d and write on e:

Net(c,d,e) A P(c,e) | P(d,e)

N

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Mutual Exclusion I

e Process : writes a site name on channel ¢;.
Multiplezor; collects inputs from c¢;, writes on e.

Multiplezor, A c;.get >x> e.put(x) > Multiplexor,
e Multiplexor collects inputs from all channels, writes them on e.
Multiplexor A (| ¢ :: Multiplexor;)

o Arbiter picks anitem g from e; grants resource by calling ¢g.Grant.
g.Grant responds after the process completes the resource usage.

Arbiter A e.get >g> g.Grant > Arbiter
e Mutex coordinates all the activities.

Mutex A Multiplexor | Arbiter

-

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Dining Philosophers I

A philosopher’s life is depicted by

P; A

{let(z,y) > FEat > Fork;.put > Fork;.put
where x:€ Fork;.get
y:€ Fork;.get

}

> P
where Fork; and Fork] are sites.
Represent the ensemble of N philosophers by

DP A (|:0<i< N:P)

N R/

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Synchronized Communication: Byzantine Protocol |

e Process : sends values to j over channel c¢;;.

7

Send;(v) A {Signal | (| j: cij.put(v) > 0)}
Read,; A {let(X) where (Vj :: X;:€ cj;.get)}

e Round;(v,n): For process ¢ to run n rounds with initial value wv.

Round;(v,0) A let(v)
Round;(v,n) A
Send;(v) > Read; >X> Compute;(X) >u> Round;(u,n—1)

e Byz(V,n): All processes run n rounds; initial value vectoris V.

Byz(V,n) A { | i: Round;(V;,n)}

- __

UN|VERS|TY OF TEXAS AT AUST|N ___|] 45

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Backtracking: Eight queens |

Figure 4: Backtrack Search for Eight queens

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Eight queens; contd. |

e configuration: placement of queens in the last 7 rows.

e Represent a configuration by a list of integers j, 0<j <7.
e Valid configuration: no queen captures another.

o Site check(z:xs): Given zs is valid, return
r:xs, If itis valid

remain silent, otherwise.

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Eight queens; contd. |

extend(z,n): where z is a valid configuration, 1 <n and |z|+n <8,
Produce all valid extensions of x by placing n additional queens.

Solve the original problem by calling extend([],8).

extend(x,1) A { |i:0<1i<8: check(i:x)}
ertend(z,n) A extend(x,1) >y> extend(y,n — 1)

- __/

DEPARTMENT OF COMPUTER SCIENCES ﬂ

(Zeroand |)
(Commutativity of |)
(Associativity of |)
(Idempotence of |)
(Associativity of)

(Left zero of)

(Right zero of)

(Left unit of)

(Right unit of)

(Left Distributivity of > over
(Right Distributivity of > over

-

)
)

‘ Laws of Kleene Algebra |

fl10=Ff

flg=9|f

(f lg) |h=Ff1(g|h)
flf=1Ff

(f>g9) >h = f>(g>h)
Os>f =0

f>0= 20

1s>f =171

f>1=1Ff

f>(@|h) = (f>g) |(f>h)
(f lg)>h = (f>h |g>h)

__

UNIVERSITY OF TEXAS AT AUSTIN

49

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Laws which do not hold I

(Idempotence of |) flf=1F
(Right zero of) f>0= 0
(Left Distributivity of > over |) f>(g |h) = (f>g9) | (f >h)

W

(a (b)
Figure 5: Schematicfor M > (N | R)and M >N | M >R

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Additional Laws I

Provided both sides are well-formed:

(Distributivity over)
{f > g where z:€ h}={f where z:€¢ h} > g

(Distributivity over |)
{f | g where x:€ h} ={f where z:€ h} | g

(Distributivity over where)
{{f where z:€ g} where y:€ h}
= {{f where y:€ h} where z:€ g}

- __/

UN|VERS|TY OF TEXAS AT AUST|N ___|] 51

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Program Structuring: Running an Auction |

e Advertize the item and a minimum bid price v: call Adv(v)

e Get bids: Bids(v) returns a stream of increasing bids, all above wv.

e Post successive bids at a web site: call PostNext

Auctionq(v) A
Adv(v) > Bids(v) >u> PostNext(u) > 0

. _

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Program Baids |

Get the next bid exceeding wv.
Assume that bidders put their bids on channel c.

nextBid(v) A
c.get
>T >
{ if(x>v) > let(x)
| if (z <v) > nextBid(v)

}

Output successively increasing bids, all above wv.
Bids(v) A nextBid(v) >u> (let(u) | Bids(u))
N ___

DEPARTMENT OF COMPUTER SCIENCES —\

‘ A Terminating Auction |

e Terminate if no higher bid arrives for an hour (A time units).

e Post the winning bid by calling PostFinal.

e Return the value of the winning bid.

Auctiong(v) A
Adv(v)
> Tbids(v)
>(va)>
{ if(b) > PostNext(x) > 0
| if (=b) > PostFinal(x) > let(x)

}
- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Tbids I

Tbhids(v) returns a stream of pairs (z, b):
xisabid, x> v,and b is boolean.

b = x exceeds the previous bid
-b = x equals the previous bid,
l.e., no higher bid has been received in an hour.

Thids(v) A
{let(z,b) | if (b) > Thids(x)
where
(z,b):€ nextBid(v) >u> let(u,true)
| Rtimer(h) > let(v,false)

N R/

UN|VERS|TY OF TEXAS AT AUST|N ___|] 55

‘ Batch Processing the Bids |

e Post higher bids only once each hour.
e As before, terminate if no higher bid arrives for an hour.
e As before, post the winning bid by calling PostFinal.

e As before, return the value of the winning bid.

Auctiong(v) A
Adv(v)
> Hbids(v)
>(z,b)>
{ if(b) > PostNext(x) > 0
| if(=b) > PostFinal(x) > let(x)

}

N

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

56

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Hbids I

Hbids(v) returns a stream of pairs (z, b), one per hour:
xisabid, x> v,and b is boolean.

b = x IS the best bid in the last hour and exceeds the last bid
-b = x equals the previous bid,
l.e., no higher bid has been received in an hour.

Hbids(v) A
clock
>t> bestBid(t + h,v)
>T >

{ let(x,z =)
\ | if(z #£v) > Hbids(x)

- __/

UN|VERS|TY OF TEXAS AT AUST|N ___|] 57

DEPARTMENT OF COMPUTER SCIENCES —\

‘ best Bid I

o bestBid(t,v) where t is an absolute time and wv is a bid,
e Returns x, x > v, where z is the best bid received up to t¢.

e If x = v then no better bid than v has been received up to t¢.

bestBid(t,v) A
{if (b) > bestBid(t,y) | if (=b) > let(v)
where
(y,b):€ nextBid(v) >x> let(z,true)
| Atimer(t) >x> let(z,false)

N R/

