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Compose basic computing elements called Sites. A site is a

e function: Compress MPEG file
method of an object: LogOn procedure at a bank
monitor procedure: read from a buffer
web service: get a stock quote
transaction: check account balance

distributed transaction: move money from one bank to another
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‘ Example: Airline |

e Contact two airlines simultaneously for price quotes.

e Buy ticket from either airline if its quote is at most $300.
e Buy the cheapest ticket if both quotes are above $300.
e Buy any ticket if the other airline does not provide a timely quote.

e Notify client if neither airline provides a timely quote.
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‘ Example: workflow I

An office assistant contacts a potential visitor.

The visitor responds, sends the date of her visit.

The assistant books an airline ticket and
contacts two hotels for reservation.

After hearing from the airline and any of the hotels:
he tells the visitor about the airline and the hotel.

The visitor sends a confirmation which the assistant notes.
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‘ Example: workflow, contd. |

After receiving the confirmation, the assistant

e confirms hotel and airline reservations.
e reserves a room for the lecture.
e announces the lecture by posting it at a web-site.

e requests a technician to check the equipment in the room.
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‘ Wide-area Computing |

Acquire data from remote services.

Calculate with these data.

Invoke yet other remote services with the results.

Additionally

Invoke alternate services for failure tolerance.

Repeatedly poll a service.

Ask a service to notify the user when it acquires the appropriate data.
Download an application and invoke it locally.

Have a service call another service on behalf of the user.
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‘ The Nature of Distributed Applications |

Three major components in distributed applications:

Persistent storage management
databases by the airline and the hotels.
Specification of sequential computational logic
does ticket price exceed $300?
Methods for orchestrating the computations

contact the visitor for a second time only after hearing from the airline
and one of the hotels.

We look at only the third problem.
N\ J
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‘ A new kind of assignment |

x:c f

where z is a variable and f is an Orc expression.

Evaluation of f may
start threads
yield zero or more values.

Assign the first value to x.
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‘ Simple Orc Expression I

CNN is a news service, d a date. Download the news page for d.

z:€ CNN(d)

e Side-effect: Book ticket at airline A for a flight described by c.

r:€ A(c)

The returned value is the price and the confirmation number.
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‘ Sites I

A site may not respond.

Its response at different times (for the same input) may be different.

A site call may change states (of external servers) tentatively or
permanently.

Tentative state changes are made permanent by explicit commitment.
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‘ Notation I

e No arithmetic or logic capability in Orc.

e Can'twrite u+wv or zVy.
Write add(u,v) and or(z,y), where add and or are sites.

e Convention: Write u+ v and z V y.
Assume that a compiler converts these to add(u,v) and or(z,y).
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‘ Some Fundamental Sites I

let(z,y,---): returns a tuple of the argument values.
Rtimer(t): integer ¢, t > 0, returns a signal ¢ time units later.
Signal returns a signal immediately. Same as Rtimer(0).

if (b): boolean b,

returns a signal if b is true;
remains silent if b is false.

. _
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‘ Composition Operators |

e CUNN >z> Email(address,x) Sequencing

e CNN | BBC Symmetric composition

e (Email(address,x) where z:c (CNN | BB(C))
Asymmetric composition
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‘ Syntax |

FE € Expression Name
M € Site

x € Variable

p € Parameter

g € Expression ::=
0 Zero expression
M (px) Site call
E (px) Expression call
f >x>g Seqguential Composition
flg Symmetric Parallel Composition
f where z:€ ¢ Asymmetric Parallel Composition

__
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‘ Examples |

Convention: >z> without z IS > .

Precedence of binding powers: where, € , |, >

N(z)

M > N(x)

M  su> N(u)

F(z,y) » N(u)

(M > 0 | {N(x)where x:c R | N(y)})

N R/
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‘ Site and Expression Call |

e Site call M(x): Call M if x is defined. Expression value is the

response from M.

Expression call: Similar to function call; may return many values.
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‘ Sequencing |

e M s N:Call M, after hearing from M call N.
Expression value is the response from N.

Rtimer(1) > Email(address, message)
Rtimer(1) > Rtimer(1)
Email(addressl, message) > Email(address2, message) > Notify

e M >zx> R(z): Passthevalue from M in z

CNN s>z> Email(address, x)
Discover(c) >m> Apply(m,y)

> IS associative. >z> Isright associative.

- __/
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‘ Symmetric composition using | |

e M | N: parallel threads call M and N. Two possible values.

e f | g:parallelthreads call f and g¢. Stream of values from each,
merged in time-order.

Example:

CNN | BBC

M | M

(M > N) [ (M > R)

if (b) > M | if(=b) > N

. _
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(M | N) >R

Create two threads to evaluate M and N . Call R for each result.

N

R R

Figurel: (M | N) > R

{Email(addressl, message) | Email(address2, message)} > Notify

Double notification.

N R/
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‘f >x>g|

Example: f >z> g, where f producesvalues 0, 1 and 2.

0 1 2
x=0 x=1 X=2
M(x)

M(X) M(X)

Figure 2: Computation of f >z> M(xz)

N R/




DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Asymmetric parallel composition: {f where x:€ ¢} |

e Evaluate f and g in parallel.

7

e When g returns a result, assign the value to = and terminate g.
e Any site call in f which does not name z can proceed.
e A site calls which names =z waits until x gets a value.

e Values produced by f are the values of {f where z:c g¢}.
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‘ Pruning the computation |

(CNN | BBC) >z> Email(address, )
May send two emails.

To send just one email:

{Email(address,z) where x:¢ (CNN | BBC)}

N R/
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Use

{{let(u,v) > Notify
where
u:€ Email(addressl, message)}
where
v:e Email(address2, message)}

Adopt the notation:

{let(u,v) > Notify
where
u:e Email(addressl, message)
v:e Email(address2, message)}

-

‘ Notify after both respond |

{Email(addressl, message) | Email(address2, message)} > Notify

UNIVERSITY OF TEXAS AT AUSTIN
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‘Constant 0 I

0 Is a site which never responds.

Example: send an email but do not walit for its response:

{Email(addressl, message) > 0 | Notify}

N R/
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‘ Expression Definition |

Asynch(M,N) A M > 0 | N

Metronome A Signal | Rtimer(1) > Metronome
BM (0) A O
BM(n+1) A S | R > BM(n)
S R
S R

Figure 3: Metronome
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‘ Example of Expression call |

Query returns a value (different ones at different times).
Accept(x) returns z if x is acceptable.

Produce all acceptable values by calling Query at unit intervals
forever.

RepeatQuery A Metronome > Query >x> Accept(x)

UNIVERSITY OF TEXAS AT AUSTIN
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‘ Some Fundamental Sites I

let(z,y,---): returns a tuple of the argument values.
Rtimer(t): integer ¢, t > 0, returns a signal ¢ time units later.
Signal returns a signal immediately. Same as Rtimer(0).

if (b): boolean b,

returns a signal if b is true;
remains silent if b is false.

. _
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‘ Small Examples |

e Call site M four times, at unit time intervals.

M | Rtimer(l) > M | Rtimer(2) > M | Rtimer(3) > M
e Time-out: set z to M’s response before ¢, 0 after t¢.
z:€ M | Rtimer(t) > let(0)
e Receive N'sresponse asap, but no earlier than 1 unit from now.
DelayedN A {Rtimer(1l) > let(u) where wu:e N}

e Call M, N together. If M responds within one unit, take its
response. Else, pick the first response.

r:€ M | Delayed N
- __
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‘ Recursive definition with time-out I

Call a list of sites.

Count the number of responses received within 10 time units.

tally([]) A let(0)
tally(z : zs) A
{u+v
where
we x > let(l) | Rtimer(10) > let(0)
v:e tally(xs)}
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‘ Sequential Computing |

o (S;T)is (S>T)

° if b then S else T

if (b) > S | if(=b) » T
o while b do x:= S(x)

loop(x) A if(b) > S(x) >y> loop(y) | if (=b) » let(x)

N R/
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‘ Kleene Star I

e For agiven z, to produce the sequence of values
x, M(z), M(z) >y> M(y), M(z) >y> M(y) >z> M(z), ...
Mstar(z) A let(x) | M(x) >y> Mstar(y)

e To produce the same sequence of values without =z, i.e.,
M(z), M(z) >y> M(y), M(z) >y> M(y) >z> M(z), ...

Mplus(z) A M(x) >y> (let(y) | Mplus(y))
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‘ Arbitration I

In CCS: a.P + 3.Q

In Orc:

if (b) > P | if(=b) » @
where
b:c Alpha > let(true) | Beta > let(false)

N R/
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‘ Time-out I

Return (z,true) if M returns z before ¢, and (—,false) otherwise.

let(z,b)
where
(z,b):€ M >x> let(z,true) | Rtimer(t) >xz> let(x,false)

N R/
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‘ Fork-join parallelism |

Call M and N In parallel.

Return their values as a tuple after they both respond.

{ let(u,v)
where u:c M
vie N

N R/
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‘ Screen Refresh I

Get: screen image, keyboard input, mouse position every time unit.

Call Draw with this triple.

Metronome
> { let(i, k,m)
where i :€ Image
k :€ Keyboard
m:€ Mouse

}

>r> Draw(z)

N
]
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‘ Barrier Synchronization |

Synchronize M s fand N > g:

f and g start only after both M and N complete.

Rendezvous of CSP or CCS; M and N are complementary actions.

{ let(u,v)
where w:e M
vie N}
> (f | 9)

To pass values from M and N to f and g, modify last line:

>(u,v)> (f | 9)

- __/




DEPARTMENT OF COMPUTER SCIENCES —\

‘ Interrupt handling |

e Orc statement can not be directly interrupted.

e Interrupt site: a monitor.
e Interrupt.set: to interrupt the Orc statement

e Interrupt.get: responds after Interrupt.set has been called.
z:€ f
Is changed to

z:€ f | Interrupt.get
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‘ Interrupt; contd. |

Determine if there has been an interrupt:

callM A
(let(z,b)
where

(z,b):€ M >x> let(z,true) | Interrupt.get >z> let(x,false)
)

Process Interrupt:

callM
>(2,0)>
{ if(b) > “Normal processing with value z”
| if (—b) > “Interrupt Processing” }

N R/
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‘ Parallel or I

Let sites M and N return booleans. Compute their parallel or.

{if (z) | of(y) | or(z,y)
where
r.e M
y:€ N}

Return just one value.

{let(z)
where
z€ if(z) | if(y) | or(z,y)
xe M
y:€ N}

N R/
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‘ Airline quotes: Application of Parallel or |

Contact airlines A and B.

Return any quote if it is below ¢ as soon as it is available,
otherwise return the minimum quote.

threshold(x) returns z if = < c; silent otherwise.

{threshold(x) | threshold(y) | Min(z,y)
where
rc A
y:€ B}

. _
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‘ Processes I

Run a dialog with the client.
Forever: client gives an integer; Process determines if it is prime.

Use channel tty: tty.get and tty.put are sites.

Dialog A
tty.get >T >
Prime?(x) >b>
tty.put(b) >
Dialog

N R/
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‘ Refinement of Dialog |

The client specifies the communication channels.

Dialog(p,q) A

p.get >T >
Prime?(x) >b>
g.put(b) >

Dialog(p, q)

N R/
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‘ Typical lterative Process I

Forever: Read =z from channel ¢, compute with 2z, output result on e:

P(c,e) A c.get >z> Compute(x) >y> e.put(y) > P(c,e)

Process (network) to read from both ¢ and d and write on e:

Net(c,d,e) A P(c,e) | P(d,e)

N
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‘ Mutual Exclusion I

e Process : writes a site name on channel ¢;.
Multiplezor; collects inputs from c¢;, writes on e.

Multiplezor, A c;.get >x> e.put(x) > Multiplexor,
e Multiplexor collects inputs from all channels, writes them on e.
Multiplexor A ( | ¢ :: Multiplexor;)

o Arbiter picks anitem g from e; grants resource by calling ¢g.Grant.
g.Grant responds after the process completes the resource usage.

Arbiter A e.get >g> g.Grant > Arbiter
e Mutex coordinates all the activities.

Mutex A Multiplexor | Arbiter

-
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‘ Dining Philosophers I

A philosopher’s life is depicted by

P; A

{let(z,y) > FEat > Fork;.put > Fork;.put
where x:€ Fork;.get
y:€ Fork;.get

}

> P
where Fork; and Fork] are sites.
Represent the ensemble of N philosophers by

DP A ( |:0<i< N:P)

N R/
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‘ Synchronized Communication: Byzantine Protocol |

e Process : sends values to j over channel c¢;;.

7

Send;(v) A {Signal | ( | j: cij.put(v) > 0)}
Read,; A {let(X) where (Vj :: X;:€ cj;.get)}

e Round;(v,n): For process ¢ to run n rounds with initial value wv.

Round;(v,0) A let(v)
Round;(v,n) A
Send;(v) > Read; >X> Compute;(X) >u> Round;(u,n—1)

e Byz(V,n): All processes run n rounds; initial value vectoris V.

Byz(V,n) A { | i: Round;(V;,n)}

- __
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‘ Backtracking: Eight queens |

Figure 4: Backtrack Search for Eight queens
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‘ Eight queens; contd. |

e configuration: placement of queens in the last 7 rows.

e Represent a configuration by a list of integers j, 0<j <7.
e Valid configuration: no queen captures another.

o Site check(z:xs): Given zs is valid, return
r:xs, If itis valid

remain silent, otherwise.
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‘ Eight queens; contd. |

extend(z,n): where z is a valid configuration, 1 <n and |z|+n <8,
Produce all valid extensions of x by placing n additional queens.

Solve the original problem by calling extend([],8).

extend(x,1) A { |i:0<1i<8: check(i:x)}
ertend(z,n) A extend(x,1) >y> extend(y,n — 1)
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(Zeroand |)
(Commutativity of |)
(Associativity of |)
(Idempotence of |)
(Associativity of )

(Left zero of )

(Right zero of )

(Left unit of )

(Right unit of )

(Left Distributivity of > over
(Right Distributivity of > over

-

)
)

‘ Laws of Kleene Algebra |

fl10=Ff

flg=9|f

(f lg) |h=Ff1(g|h)
flf=1Ff

(f>g9) >h = f>(g>h)
Os>f =0

f>0= 20

1s>f =171

f>1=1Ff

f>(@|h) = (f>g) |(f>h)
(f lg)>h = (f>h |g>h)

__
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‘ Laws which do not hold I

(Idempotence of |) flf=1F
(Right zero of ) f>0= 0
(Left Distributivity of > over |) f>(g |h) = (f>g9) | (f >h)

W

(a (b)
Figure 5: Schematicfor M > (N | R)and M >N | M >R
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‘ Additional Laws I

Provided both sides are well-formed:

(Distributivity over )
{f > g where z:€ h}={f where z:€¢ h} > g

(Distributivity over | )
{f | g where x:€ h} ={f where z:€ h} | g

(Distributivity over where )
{{f where z:€ g} where y:€ h}
= {{f where y:€ h} where z:€ g}

- __/
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‘ Program Structuring: Running an Auction |

e Advertize the item and a minimum bid price v: call Adv(v)

e Get bids: Bids(v) returns a stream of increasing bids, all above wv.

e Post successive bids at a web site: call PostNext

Auctionq(v) A
Adv(v) > Bids(v) >u> PostNext(u) > 0

. _
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‘ Program Baids |

Get the next bid exceeding wv.
Assume that bidders put their bids on channel c.

nextBid(v) A
c.get
>T >
{ if(x>v) > let(x)
| if (z <v) > nextBid(v)

}

Output successively increasing bids, all above wv.
Bids(v) A nextBid(v) >u> (let(u) | Bids(u))
N ___
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‘ A Terminating Auction |

e Terminate if no higher bid arrives for an hour ( A time units).

e Post the winning bid by calling PostFinal.

e Return the value of the winning bid.

Auctiong(v) A
Adv(v)
> Tbids(v)
>(va)>
{ if(b) > PostNext(x) > 0
| if (=b) > PostFinal(x) > let(x)

}
- __/
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‘ Tbids I

Tbhids(v) returns a stream of pairs (z, b):
xisabid, x> v,and b is boolean.

b = x exceeds the previous bid
-b = x equals the previous bid,
l.e., no higher bid has been received in an hour.

Thids(v) A
{let(z,b) | if (b) > Thids(x)
where
(z,b):€ nextBid(v) >u> let(u,true)
| Rtimer(h) > let(v,false)

N R/
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‘ Batch Processing the Bids |

e Post higher bids only once each hour.
e As before, terminate if no higher bid arrives for an hour.
e As before, post the winning bid by calling PostFinal.

e As before, return the value of the winning bid.

Auctiong(v) A
Adv(v)
> Hbids(v)
>(z,b)>
{ if(b) > PostNext(x) > 0
| if(=b) > PostFinal(x) > let(x)

}

N
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‘ Hbids I

Hbids(v) returns a stream of pairs (z, b), one per hour:
xisabid, x> v,and b is boolean.

b = x IS the best bid in the last hour and exceeds the last bid
-b = x equals the previous bid,
l.e., no higher bid has been received in an hour.

Hbids(v) A
clock
>t> bestBid(t + h,v)
>T >

{ let(x,z =)
\ | if(z #£v) > Hbids(x)

- __/
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‘ best Bid I

o bestBid(t,v) where t is an absolute time and wv is a bid,
e Returns x, x > v, where z is the best bid received up to t¢.

e If x = v then no better bid than v has been received up to t¢.

bestBid(t,v) A
{if (b) > bestBid(t,y) | if (=b) > let(v)
where
(y,b):€ nextBid(v) >x> let(z,true)
| Atimer(t) >x> let(z,false)

N R/




