Orc Verification

Jayadev Misra

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

WG 2.3, St. Petersburg
June 5, 2013

Orc Verification has been a disaster

Concurrency everywhere

Non-determinacy
As powerful as any other process calculus

Real time
Not just causal ordering among events but temporal ordering

Basic orc has no mutable variables, but sites do

Full functional programming (w/o monads)
plus (active) Objects.

Subset Sum

Given integern and list of integersxs.

parsum(n, xs) publishes all sublists oks that sum ton.
parsum5,[1,2,1,2]) =[1,2,2], [2 1,2]
parsum(5,[1, 2, 1]) is silent

def parsum(0, []) = []
def parsum(n,[]) = stop
def parsum(n,X : xs) =

parsum(n — X, Xs) >Yys> X:ys
| parsum(n, xs)

Subset Sum (Contd.), Backtracking
Given integern and list of integersxs.

segsum(n, xs) publishes théirst sublist of xs that sums ton.

“First” is smallest by index lexicographically.
seqsum5,[1,2,1,2]) =11, 2, 2]

seqsum(5, [1, 2, 1]) is silent
def seqsum(0, []) =]
def segsum(n, []) = stop
def segsum(n, X : xs) =

X : seqgsum(n — X, XS)
; seqsum(n, Xs)

Subset Sum (Contd.), Concurrent Backtracking

Publish thefirst sublist of xs that sums ton.
Run the searches concurrently.
def parseqsum(0, []) = []
def parseqsum(n, []) = stop
def parsegsum(n, x : Xs) =
(P30
<p< X: parsegsum(n — X, Xs)

<Q< parseqsum(n, xs)

Note: Neither search in the last clause may succeed.

Semantics

Tree semantics with Hoare

Operational semantics with Cook

1. Traces
2. Bisimulation can be applied to prove some identities.
3. Denotational Semantics was difficult. But, it establisheatt

Orc combinators are monotonic and continuous.

But, operational semantics seems ineffective for program
proving.

| failed in applying axiomatic semantics.

A sequence of Verification Problems

Basic Orc without mutable variables, real time
add real time
add mutable variables

Full Orc language

Denotational semantics with composable proof theorie

[fld] A [f]11d]
[f >x>9] A [f] >x>[g], [f>g A [f] >[d]
[f <x<g] A [f] <x<[g], [f<g A [f] <[d]
[f 5 9] A [f]51]d]

Simple Expressions

e 1publishes justl: {1}

Simple Expressions

e 1publishes justl: {1}

e 1| 2publishesland 2in either order: {1, 2}

Simple Expressions

e 1publishes justl: {1}
e 1| 2publishes1and 2in either order: {1, 2}
e 1| 1publishesland 1: [1,1]

Publications are unordered.

A possible denotation of expressions

Represent an expression by a bag of values.
| combines two bags.

Bags may be infinite.
def nat(i) = i | nat(i + 1)

def nats() = nat(0)

[nats()] = [0, 1, -]
Computation may be infinite without any publication.

def unend() = signal > unend()

[unend()] =]

Bags are not enough

[stop] =[]
[unend()] = []
But their behaviors are different:

stop ;3 # unend() ;3

Halting, Waiting

Associate a statusi for halting, W for waiting, to each bag.

[stop] = HI]

[1] unend()] = W]
[nats()] = W[0,1,- -]

Elementary termA status and a bag.
The status of an infinite bag is alwayy.

Combining Elementary Terms witH

s | $[m] = (s §)[mu)
whereHNs=s Wns=W
[1] true] = H[1] | H]trug] = H[1, trug]
[1]stop] =H[1] | H[] = H[1]
[1] unend()] = H[1] | W[] = W[1]

[nats() | nats()] # [nats()]

Specification

A specificationspeg is a set of terms, possibly infinitely many.

[Random(3)] = {HI[O], H[1],H[2]}

[Random(3) | true | false]
= {H[O,true, false], H[1, true, false], H[2, true, false] }

Janynat()] = {H]i] | naturali}

Combining specs using

| distributes over each argument set. Take Cartesian product
e {s0,--s,--} [{to, - ti,- - f ={(s0|to), -~ (s |), }

Guarded Term

e b—sm:
the set of traces in which the bindings satidfiyand the status
and publications satisfys[m|.

e Taking | over guarded terms:
b—gm|b —dm=(MbAb)—(sns)mun]

e Guards distribute over terms in a spec:
b— {to,t1---}={b—to,b—1t1---}

Parameters; Guarded terms

e [not(x)] = {x = true — Hitrue], x = false — HJfalse]}
e [x] ={x=c—H]c]| forallc}
o [Ift(x)] = {x = true — H[signal], x # true — H[]}
Often a parameter is known to remain unbound, denoted by

IX] ={x= Y—H[]}u{x=c— Hic]| forallc}

Example

{x = true — HJ[signal], x # true — H[]}

[It(x)
Iff {x = false — Hsignal], x # false — H|[]}

]
[()]
[0 [1 ()]
{x=trueAx=fase— ---)
, (X = true A x # false — H[signal])
, (X # true A x = false — H[signal])
, (X # true A x # false — H[])}

{(x=true Vv x = false — Hlsignal])
, (X #£ true A x # false — H[])}

Notation

Convention:
S f(xy)] A {x=cry=¢ —sf-fc.c)] | vec),
for any total functionf that is strict in all its arguments.

e [choose(x,y)] = {H[x, H[y[}

. [parallel_or(x,y)]
= {(x = true — Hitrue]),
(y = true — Hitrue]),
Hx vy}

e (X=true— Hltrug)), (y = true — Hltrue])
is not the same as
(x =true vy = true — Hitrue])
The first line is satisfied even if just one afand y is bound.

Sequential Composition

(1]12) > (10| 20) : Execute the rhs for every publication of Ihs

10 20 10 20

Should have the spekEl[10, 20, 10, 20, construced fromH[1, 2] and
H[10,20).

Sequential Composition; contd.

In sim| > q, for every value inmone instance of a program with
spec q is executed. All such programs are executed in parallel.

Tentative Rule:sm] >q= |[g|c e m|

H[1,2] > HJ10,20]
={Tentative Rule}
H[10,20] | H[10, 20

H[10, 20, 10, 20|
For WI[1,2] > H[10, 20], the result should bé&V[10, 20, 10, 20|
Exact Rule:

sim >q=9][[g|ce=m]
P >Q= Uep(t >0

Sequential Composition with value passing
[(1]2) >x> (104 x| 20— x)] = H[11,12,18,19
Rule

gm >x>q
p >X>(q

] [(x—cjalcem)
Utep(t >Xx> 1)

H[1,2] >x> H[10+x,20— x|

H[]| (x— 1)H[10+ x,20 — X] | (X 2)H[10+ x,20 — X]
H[] | H[10+ 1,20 — 1] | H[10+ 2,20 — 2]
H[11,19,12, 18§

[
Exercise: [nats() >x> X X]

Pruning

[(x <x<(1]2)] = {H[1],H[2Z]}
Rule

P <x<gm = Ueem((x—c)p)
p <x<q = Uteq) (P <x< 1)

i <i<nats()]

L

i| <i<W[0,1,---]
Uteeo,,—) (i = S)H[i])

—
IIIA Il
o
I
=

Recursive Definition

def nat(i) = i | nat(i + 1)

def nats() = nat(0)

Ordering over terms

o 1<t
e (b—W[m)< b —sm)) if f =b, mCm

WI[] is the smallest term.

Prefix closure; Spec Ordering

Define:
o t"={s|s<t}

* P" = Uep(t?)

e p<gA P Cq

Monotonicity, Continuity

e Every combinator is monotonic in each argument.

e Every combinator is continuous in each argument.
Take the lub of a chain of specs to be the union of their clasure

Extensions

e Real time needs a surprisingly simple extension.

¢ Yetto be done: Mutable sites, Orc language

