
Orc Verification

Jayadev Misra

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

WG 2.3, St. Petersburg
June 5, 2013

Orc Verification has been a disaster

• Concurrency everywhere

• Non-determinacy
As powerful as any other process calculus

• Real time
Not just causal ordering among events but temporal ordering

• Basic orc has no mutable variables, but sites do

• Full functional programming (w/o monads)
plus (active) Objects.

Subset Sum

Given integern and list of integersxs.

parsum(n, xs) publishes all sublists ofxs that sum ton.

parsum(5,[1,2,1,2]) = [1,2,2], [2,1,2]

parsum(5,[1,2,1]) is silent

def parsum(0, []) = []

def parsum(n, []) = stop

def parsum(n, x : xs) =
parsum(n − x, xs) >ys> x : ys

| parsum(n, xs)

Subset Sum (Contd.), Backtracking

Given integern and list of integersxs.

seqsum(n, xs) publishes thefirst sublist of xs that sums ton.

“First” is smallest by index lexicographically.
seqsum(5,[1,2,1,2]) = [1,2,2]

seqsum(5,[1,2,1]) is silent

def seqsum(0, []) = []

def seqsum(n, []) = stop

def seqsum(n, x : xs) =
x : seqsum(n − x, xs)

; seqsum(n, xs)

Subset Sum (Contd.), Concurrent Backtracking

Publish thefirst sublist of xs that sums ton.

Run the searches concurrently.

def parseqsum(0, []) = []

def parseqsum(n, []) = stop

def parseqsum(n, x : xs) =
(p ; q)

<p< x : parseqsum(n − x, xs)
<q< parseqsum(n, xs)

Note: Neither search in the last clause may succeed.

Semantics

• Tree semantics with Hoare

• Operational semantics with Cook

1. Traces
2. Bisimulation can be applied to prove some identities.
3. Denotational Semantics was difficult. But, it established that:

Orc combinators are monotonic and continuous.

• But, operational semantics seems ineffective for program
proving.

• I failed in applying axiomatic semantics.

A sequence of Verification Problems

• Basic Orc without mutable variables, real time

• add real time

• add mutable variables

• Full Orc language

Denotational semantics with composable proof theories

[[f | g]] ∆ [[f]] | [[g]]
[[f >x> g]] ∆ [[f]] >x> [[g]], [[f ≫ g]] ∆ [[f]] ≫ [[g]]
[[f <x< g]] ∆ [[f]] <x< [[g]], [[f ≪ g]] ∆ [[f]] ≪ [[g]]
[[f ; g]] ∆ [[f]] ; [[g]]

Simple Expressions

• 1 publishes just1: {1}

• 1 | 2 publishes1 and 2 in either order:{1, 2}

• 1 | 1 publishes1 and 1: [1, 1]

Publications are unordered.

Simple Expressions

• 1 publishes just1: {1}

• 1 | 2 publishes1 and 2 in either order:{1, 2}

• 1 | 1 publishes1 and 1: [1, 1]

Publications are unordered.

Simple Expressions

• 1 publishes just1: {1}

• 1 | 2 publishes1 and 2 in either order:{1, 2}

• 1 | 1 publishes1 and 1: [1, 1]

Publications are unordered.

A possible denotation of expressions

• Represent an expression by a bag of values.

• | combines two bags.

• Bags may be infinite.

def nat(i) = i | nat(i + 1)

def nats() = nat(0)

[[nats()]] = [0, 1, · · ·]

• Computation may be infinite without any publication.

def unend() = signal ≫ unend()

[[unend()]] = []

Bags are not enough

[[stop]] = []

[[unend()]] = []

But their behaviors are different:

stop ; 3 6= unend() ; 3

Halting, Waiting

Associate a status,H for halting, W for waiting, to each bag.

[[stop]] = H[]

[[unend()]] = W[]

[[1]] = H[1]

[[1 | unend()]] = W[1]

[[nats()]] = W[0, 1, · · ·]

Elementary term: A status and a bag.
The status of an infinite bag is alwaysW.

Combining Elementary Terms with|

s[m] | s′[m′] = (s ∩ s′)[m ⊔ m′]

where H ∩ s = s, W ∩ s = W

[[1 | true]] = H[1] | H[true] = H[1, true]

[[1 | stop]] = H[1] | H[] = H[1]

[[1 | unend()]] = H[1] | W[] = W[1]

[[nats() | nats()]] 6= [[nats()]]

Specification

A specification,spec, is a set of terms, possibly infinitely many.

[[Random(3)]] = {H[0], H[1], H[2]}

[[Random(3) | true | false]]
= {H[0, true, false], H[1, true, false], H[2, true, false]}

[[anynat()]] = {H[i] naturali}

Combining specs using|

| distributes over each argument set. Take Cartesian product.

• {s0, · · · si, · · · } | {t0, · · · ti, · · · } = {(s0 | t0), · · · (si | tj), · · · }

Guarded Term

• b → s[m]:
the set of traces in which the bindings satisfyb and the status
and publications satisfys[m].

• Taking | over guarded terms:

b → s[m] | b′ → s′[m′] = (b ∧ b′) → (s ∩ s′)[m ⊔ m′]

• Guards distribute over terms in a spec:

b → {t0, t1 · · · } = {b → t0, b → t1 · · · }

Parameters; Guarded terms

• [[not(x)]] = {x = true → H[true], x = false → H[false]}

• [[x]] = {x = c → H[c] for all c}

• [[Ift(x)]] = {x = true → H[signal], x 6= true → H[]}

Often a parameter is known to remain unbound, denoted by6 !

[[x]] = {x = 6 ! → H[]} ∪ {x = c → H[c] for all c}

Example

[[Ift(x)]] = {x = true → H[signal], x 6= true → H[]}
[[Iff (x)]] = {x = false → H[signal], x 6= false → H[]}

[[Ift(x) | Iff (x)]]
= {(x = true ∧ x = false → · · ·)

, (x = true ∧ x 6= false → H[signal])
, (x 6= true ∧ x = false → H[signal])
, (x 6= true ∧ x 6= false → H[])}

= {(x = true ∨ x = false → H[signal])
, (x 6= true ∧ x 6= false → H[])}

Notation

Convention:
s[· · · f (x, y) · · ·] ∆ {x = c ∧ y = c′ → s[· · · f (c, c′) · · ·] ∀c, c′},
for any total functionf that is strict in all its arguments.

• [[choose(x, y)]] = {H[x], H[y]}

• [[parallel_or(x, y)]]
= {(x = true → H[true]),

(y = true → H[true]),
H[x ∨ y]}

• (x = true → H[true]), (y = true → H[true])
is not the same as
(x = true ∨ y = true → H[true])
The first line is satisfied even if just one ofx and y is bound.

Sequential Composition

(1 | 2) ≫ (10 | 20) : Execute the rhs for every publication of lhs

Should have the specH[10, 20, 10, 20], construced fromH[1, 2] and
H[10, 20].

Sequential Composition; contd.
In s[m] ≫ q, for every value inm one instance of a program with
spec q is executed. All such programs are executed in parallel.

Tentative Rule:s[m] ≫ q = | [q c ⊏− m]

H[1, 2] ≫ H[10, 20]
={Tentative Rule}

H[10, 20] | H[10, 20]
=

H[10, 20, 10, 20]

For W[1, 2] ≫ H[10, 20], the result should beW[10, 20, 10, 20]

Exact Rule:

s[m] ≫ q = s[] | [q c ⊏− m]
p ≫ q = ∪t∈p(t ≫ q)

Sequential Composition with value passing

[[(1 | 2) >x> (10+ x | 20− x)]] = H[11, 12, 18, 19]

Rule:

s[m] >x> q = s[] | [(x 7→ c)q c ⊏− m]
p >x> q = ∪t∈p(t >x> q)

H[1, 2] >x> H[10+ x, 20− x]
=

H[] | (x 7→ 1)H[10+ x, 20− x] | (x 7→ 2)H[10+ x, 20− x]
=

H[] | H[10+ 1, 20− 1] | H[10+ 2, 20− 2]
=

H[11, 19, 12, 18]

Exercise: [[nats() >x> x ∗ x]]

Pruning

[[(x <x< (1 | 2)]] = {H[1], H[2]}

Rule:

p <x< s[m] = ∪(c∈m)((x 7→ c)p)

p <x< q = ∪(t∈q)(p <x< t)

[[i <i< nats()]]
=

H[i] <i< W[0, 1, · · ·]
=
∪(c∈[0,1,···])((i 7→ c)H[i])
=
{H[0], H[1] · · · }

Recursive Definition

def nat(i) = i | nat(i + 1)

def nats() = nat(0)

Ordering over terms

• t ≤ t

• (b → W[m]) ≤ (b′ → s[m′]) if b′ ⇒ b, m ⊑ m′

W[] is the smallest term.

Prefix closure; Spec Ordering

Define:

• t∗ = {s s ≤ t}

• p∗ = ∪t∈p(t∗)

• p ≤ q ∆ p∗ ⊆ q∗

• p ≡ q ∆ (p ≤ q) ∧ (q ≤ p)
So, (p ≡ q) = (p∗ = q∗)

Monotonicity, Continuity

• Every combinator is monotonic in each argument.

• Every combinator is continuous in each argument.
Take the lub of a chain of specs to be the union of their closures.

Extensions

• Real time needs a surprisingly simple extension.

• Yet to be done: Mutable sites, Orc language

