
A denotational semantic theory of concurrent
systems

Jayadev Misra1

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

WG 2.3, Orlando
May 2013

1Thanks to Ernie Cohen.

Denotational Semantics of Concurrent Systems

• Scott’s denotational semantics specialized to concurrentsystems.

• Strong results for this specific domain.

• Inappropriate for other areas, such as sequential programs.

• Derive specification of a program from those of its components.

• Prove program properties (safety, progress) from the
specification.

2

Denotational Semantics

• f ⊕ g is a program constructed out of

componentsf and g, and

combinator⊕, a programming language construct.

• The specification off ⊕ g, [[f ⊕ g]] is given by:

[[f ⊕ g]] ∆ [[f]] [[⊕]] [[g]]

• [[⊕]] is atransformerof specifications:

It combines two specifications,[[f]] and [[g]], to yield a
specification.

Notation Overloading: use⊕ instead of [[⊕]].

3

Denotational Semantics

• f ⊕ g is a program constructed out of

componentsf and g, and

combinator⊕, a programming language construct.

• The specification off ⊕ g, [[f ⊕ g]] is given by:

[[f ⊕ g]] ∆ [[f]] [[⊕]] [[g]]

• [[⊕]] is atransformerof specifications:

It combines two specifications,[[f]] and [[g]], to yield a
specification.

Notation Overloading: use⊕ instead of [[⊕]].

3

Denotational Semantics

• f ⊕ g is a program constructed out of

componentsf and g, and

combinator⊕, a programming language construct.

• The specification off ⊕ g, [[f ⊕ g]] is given by:

[[f ⊕ g]] ∆ [[f]] [[⊕]] [[g]]

• [[⊕]] is atransformerof specifications:

It combines two specifications,[[f]] and [[g]], to yield a
specification.

Notation Overloading: use⊕ instead of [[⊕]].

3

Denotational Semantics

• f ⊕ g is a program constructed out of

componentsf and g, and

combinator⊕, a programming language construct.

• The specification off ⊕ g, [[f ⊕ g]] is given by:

[[f ⊕ g]] ∆ [[f]] [[⊕]] [[g]]

• [[⊕]] is atransformerof specifications:

It combines two specifications,[[f]] and [[g]], to yield a
specification.

Notation Overloading: use⊕ instead of [[⊕]].

3

Contributions of this work

• specifications of concurrent components.

• A theory of transformers: functions mapping specs to specs.

• Provingsafety, progress, branching timeproperties with:

concurrency

non-determinacy

recursion

shared resource

fairness

divergence

real-time

4

Status

• Completed the theoretical work

• Currently being applied to Orc calculus

• Need to do considerable work in verification engineering

• logic for specification

• applications to other process algebras

• mechanization

5

Summary

Closure Meaning Preserving Corresponding
Transformer Function

Downward Prefix-closed Smooth Monotonic
Upward Limit-closed Bismooth Continuous

• A library of smooth and bismooth transformers.

• Fixed-point theorems:
• Least upward-closed fixed point
• Min-max fixed point (to deal with fairness)

6

Component Specification

• Events.

• Traces.

• A specification is a prefix-closed set of traces.

7

Events associated with a component

pub(true) publish (output) a value

x.read(3) read a value from variablex

c.receive(”val”) receive ”val” from channelc

Heads/Tails outcome of an internal coin toss

x.add(5) Method call

• Events are event instances.

• They are uninterpreted, instantaneous and atomic.

• There is a universal event alphabet.

8

Events associated with a component

pub(true) publish (output) a value

x.read(3) read a value from variablex

c.receive(”val”) receive ”val” from channelc

Heads/Tails outcome of an internal coin toss

x.add(5) Method call

• Events are event instances.

• They are uninterpreted, instantaneous and atomic.

• There is a universal event alphabet.

8

Execution of a component (informal notion)

An execution is a sequence of events.

Toss a coin and publish the outcome.
Two possible executions:

[Heads, pub(”Heads”)]
[Tails, pub(”Tails”)]

With all intermediate executions:

[]
[Heads]
[Heads, pub(”Heads”)]
[Tails]
[Tails, pub(”Tails”)]

9

Execution of a component (informal notion)

An execution is a sequence of events.

Toss a coin and publish the outcome.
Two possible executions:

[Heads, pub(”Heads”)]
[Tails, pub(”Tails”)]

With all intermediate executions:

[]
[Heads]
[Heads, pub(”Heads”)]
[Tails]
[Tails, pub(”Tails”)]

9

Another Program

Two tosses, but stop if the first toss is Heads

[Heads]
[Tails, Heads]
[Tails, Tails]

Plus all the prefixes of these sequences.

10

Depict Executions by a tree

Two tosses, but stop if the first toss is Heads

[Heads], [Tails, Heads], [Tails, Tails] plus the prefixes.

• Each node is an execution.

• Label on each branch is an event.

• An ancestor is a prefix.

11

Infinite Executions

Toss a coin repeatedly until it lands Heads.

[]
[Heads] [Tails]
[Tails, Heads] [Tails, Tails]
[Tails, Tails, Heads] [Tails, Tails, Tails]
[Tails, Tails, Tails, Heads] · · ·

• An unfair coin may may always land Tails.

• Admit infinite execution: [Tails, Tails, Tails, · · ·]

• Executions described by:
{[Tailsj] j ≥ 0} ∪ {[Tailsj , Heads] j ≥ 0} ∪ {[Tailsω]}

12

Infinite Executions

Toss a coin repeatedly until it lands Heads.

[]
[Heads] [Tails]
[Tails, Heads] [Tails, Tails]
[Tails, Tails, Heads] [Tails, Tails, Tails]
[Tails, Tails, Tails, Heads] · · ·

• An unfair coin may may always land Tails.

• Admit infinite execution: [Tails, Tails, Tails, · · ·]

• Executions described by:
{[Tailsj] j ≥ 0} ∪ {[Tailsj , Heads] j ≥ 0} ∪ {[Tailsω]}

12

Status of an Execution
• Status denotes the final state of an execution. From{W, H, D}.

• Infinite execution has statusD.

• Finite executions typically have statusH or W. Some haveD.

W is Waiting:
more autonomous computation to do or waiting for external input.

H is Halted: nothing more to do.

D is Divergent: An infinite computation.

• Example of Divergent Execution

def loop() = loop()

13

Trace

A traceis s[m] where

• s, status, is from {W, H, D}.

• mfinite or infinite event sequence.

14

Trace (formal notion)
Trace: A sequence of events plus the final state of computation.

Toss a coin and publish the outcome. Possible traces are:

W[] W[Heads] W[Tails]
W[Heads, pub(”Heads”)] W[Tails, pub(”Tails”)]
H[Heads, pub(”Heads”)] H[Tails, pub(”Tails”)]

15

Trace prefix

In the trace tree, prefix of a node is an ancestor.

Formally, s[m] ≤ s′[m′], means

s[m] = s′[m′], or

(s = W) and(m prefix ofm′)

Applies to infinite traces.

• ≤ is a partial order.

• < is a well-founded order.

• W[] is the bottom trace.

16

Trace prefix

In the trace tree, prefix of a node is an ancestor.

Formally, s[m] ≤ s′[m′], means

s[m] = s′[m′], or

(s = W) and(m prefix ofm′)

Applies to infinite traces.

• ≤ is a partial order.

• < is a well-founded order.

• W[] is the bottom trace.

16

Prefix Closure (downward closure)

Prefix closure of tracet is the set of all its prefixes:

t∗ = {s s≤ t}

For traceset (non-empty set of traces)p define downward closure by:

p∗ = ∪t∈p(t∗), for non-emptyp

(p× q× · · · × r)∗ = p∗ × q∗ · · · × r∗ Cartesian Product

17

Spec

• A specification (spec) is a prefix-closed set of traces.

• Definition: Tracesetp is a spec iff p = p∗.

• Note: A spec is always non-empty.

18

Meaning of a component spec

• Each trace in a spec is a possible execution in some environment.

• So, a spec is prefix-closed.

• W[m] without extension denotes deadlock.

• Eventual halting:

• Every waiting trace has an extension by an autonomous event.
• There is no divergent trace.

19

Example spec: successor

• suc(x) publishes the successor of the argument integerx.

• spec: {H[read(i), pub(i + 1)] i integer}∗

20

Example spec: conditional

• Ift(b) for booleanb
• publishessignalfor b = true

• halts silently for b = false

• spec:{H[read(false)], H[read(true), pub(signal)]}∗

21

Tree depiction of a spec is insufficient

Toss a coin sequentially until it lands Heads.

unfair coin: {H[Tailsj , Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

fair coin: {H[Tailsj , Heads] j ≥ 0}∗

Explicit inclusion/exclusion of infinite traces in a spec.

22

Transformers

Denotational Semantics (repeated)

• f ⊕ g is a program constructed out of

componentsf and g, and

combinator ⊕, a programming language construct.

• The specification off ⊕ g, [[f ⊕ g]] is given by:

[[f ⊕ g]] ∆ [[f]][[⊕]][[g]]

• [[⊕]] is atransformer:

It combines two specifications,[[f]] and [[g]], to yield a
specification.

Notation Overloading: use⊕ instead of [[⊕]].

23

A Motivating Example

• Programming language construct,⊕: ⊕ (A, B, C)

• ExecuteA, B concurrently.

• If A engages ineand B in e, they rendezvous.
Then startC to run concurrently withA and B.

24

A Motivating Example: ⊕ (A, B, C)

• Let specifications ofA, B, C be p, q, r, respectively.

• C′ starts with eventa and then behaves asC:
spec iscons(a, r).

• spec of A, B, C′ running concurrently:p | q | cons(a, r).

• Retain those traces in which{e, e, a} are contiguous.
Replace these 3 events by eventτ :
rendezvous({e, e, a}, τ, (p | q | cons(a, r)))

• Drop the τ symbol from each trace:
⊕′ (p, q, r) =

drop(τ, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

25

A Motivating Example: ⊕ (A, B, C)

• Let specifications ofA, B, C be p, q, r, respectively.

• C′ starts with eventa and then behaves asC:
spec iscons(a, r).

• spec of A, B, C′ running concurrently:p | q | cons(a, r).

• Retain those traces in which{e, e, a} are contiguous.
Replace these 3 events by eventτ :
rendezvous({e, e, a}, τ, (p | q | cons(a, r)))

• Drop the τ symbol from each trace:
⊕′ (p, q, r) =

drop(τ, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

25

A Motivating Example: ⊕ (A, B, C)

• Let specifications ofA, B, C be p, q, r, respectively.

• C′ starts with eventa and then behaves asC:
spec iscons(a, r).

• spec of A, B, C′ running concurrently:p | q | cons(a, r).

• Retain those traces in which{e, e, a} are contiguous.
Replace these 3 events by eventτ :
rendezvous({e, e, a}, τ, (p | q | cons(a, r)))

• Drop the τ symbol from each trace:
⊕′ (p, q, r) =

drop(τ, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

25

A Motivating Example: ⊕ (A, B, C)

• Let specifications ofA, B, C be p, q, r, respectively.

• C′ starts with eventa and then behaves asC:
spec iscons(a, r).

• spec of A, B, C′ running concurrently:p | q | cons(a, r).

• Retain those traces in which{e, e, a} are contiguous.
Replace these 3 events by eventτ :
rendezvous({e, e, a}, τ, (p | q | cons(a, r)))

• Drop the τ symbol from each trace:
⊕′ (p, q, r) =

drop(τ, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

25

A Motivating Example: ⊕ (A, B, C)

• Let specifications ofA, B, C be p, q, r, respectively.

• C′ starts with eventa and then behaves asC:
spec iscons(a, r).

• spec of A, B, C′ running concurrently:p | q | cons(a, r).

• Retain those traces in which{e, e, a} are contiguous.
Replace these 3 events by eventτ :
rendezvous({e, e, a}, τ, (p | q | cons(a, r)))

• Drop the τ symbol from each trace:
⊕′ (p, q, r) =

drop(τ, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

25

Example Transformer: Sequential Composition,f ; g

• g starts executing when and only whenf halts.

• A trace of f ; g is of the form:

• s[m] where s[m] is a trace off and s is W or D, or

• s[m n] where

H[m] is a trace off

s[n] is a trace ofg

26

Example Transformer: Sequential Composition,f ; g

• g starts executing when and only whenf halts.

• A trace of f ; g is of the form:

• s[m] where s[m] is a trace off and s is W or D, or

• s[m n] where

H[m] is a trace off

s[n] is a trace ofg

26

Example Transformer: parallel composition,f | g

• f and g execute independently.

• Let s[m] be a trace off , t[n] of g, sand t from {H, W}.

Then, f | g includes traces(s∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W∩ W = W.

• m⊗ n is all interleavings (merge) ofm and n.

• Merging with infinite sequence:fair andunfair merge.

27

Example Transformer: parallel composition,f | g

• f and g execute independently.

• Let s[m] be a trace off , t[n] of g, sand t from {H, W}.

Then, f | g includes traces(s∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W∩ W = W.

• m⊗ n is all interleavings (merge) ofm and n.

• Merging with infinite sequence:fair andunfair merge.

27

Example Transformer: parallel composition,f | g

• f and g execute independently.

• Let s[m] be a trace off , t[n] of g, sand t from {H, W}.

Then, f | g includes traces(s∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W∩ W = W.

• m⊗ n is all interleavings (merge) ofm and n.

• Merging with infinite sequence:fair andunfair merge.

27

Example Transformer: parallel composition,f | g

• f and g execute independently.

• Let s[m] be a trace off , t[n] of g, sand t from {H, W}.

Then, f | g includes traces(s∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W∩ W = W.

• m⊗ n is all interleavings (merge) ofm and n.

• Merging with infinite sequence:fair andunfair merge.

27

Definition: Transformer, Trace-wise Transformer

• A transformer is a function that maps a tuple of specs to a spec:
f (p, q, · · · , r)

Notation: Infix p⊕ q for 2-tuple transformer .

• Tracewise-transformer: Maps a tuple oftracesto a traceset.
Then,

f (p) = ∪{f (t) t ∈ p}

p⊕ q = ∪{s⊕ t s∈ p, t ∈ q}

• Henceforth all transformers are tracewise.

When is f (p) a spec given thatp is a spec?

28

Smooth Transformer

• A smoothtransformer preserves prefix closure.

• Smooth Transformer: For any traces,

f ∗(s) = f (s∗) (Notation: f ∗(s) is (f (s))∗)
(s⊕ t)∗ = s∗ ⊕ t∗

29

Properties of smooth transformers

• For smoothf and specp, f ∗(p) = f (p∗).

• Follows: A smooth transformer transforms specs to specs.

• Composition of smooth transformers is smooth.

• f is smooth iff
• f transforms specs to specs, and

• f is monotonic: s≤ t ⇒ f ∗(s) ⊆ f ∗(t).

30

Example of Smooth Transformer: choice

• f or g: choose to execute eitherf or g

transformer: sor t = {s} ∪ {t}

• or is smooth.

31

Example of Smooth Transformer: cons

• Append a specific eventa as the first event of every trace.

• cons(a, W[]) = {W[], W[a]}

cons(a, s[m]) = {s[a m]}

32

Example of Smooth Transformer: Filter

• A filter transformer accepts or rejects each trace.

• A filter is defined by a predicateb on traces, where

1. b(W[]) holds, and

2. If b(t) holds thenb(s) holds for all prefixess of t.

• A filter transformer accepts all prefixes for whichb holds.

f (t) = {s b(s) ∧ s≤ t}

33

Examples of Smooth transformers

• unfair merge: f | g

• fair merge: f | ′g

• rendezvous: merge traces so that eventseand e′ are contiguous.

• sequential composition:f ; g

H[m] ; t[n] = {t[m n]},

s ; t[n] = {s}, otherwise

34

Fairness

• Coin tosses are fair.

• Fair scheduler: In a multiprocess implementation every process
gets to execute eventually.

• A semaphore is granted fairly.

• Any finite interval in time can contain only a finite number of
events.

35

Fairness is a filter transformer

• The transformer accepts all finite traces,
accepts the fair infinite traces and rejects the unfair ones.

• Fits the definition of a filter, a smooth transformer.

Example: coin toss forever until Heads appears.

• unfair coin:

{H[Tailsj , Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

• fair coin: Apply the filter that rejects the infinite sequenceof
Tails.

{H[Tailsj , Heads] j ≥ 0}∗

36

Fairness is a filter transformer

• The transformer accepts all finite traces,
accepts the fair infinite traces and rejects the unfair ones.

• Fits the definition of a filter, a smooth transformer.

Example: coin toss forever until Heads appears.

• unfair coin:

{H[Tailsj , Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

• fair coin: Apply the filter that rejects the infinite sequenceof
Tails.

{H[Tailsj , Heads] j ≥ 0}∗

36

Shared Resource

• Considerx.read() | x.write(3),
where local variablex is initialized to 0.

• spec of x.read() includes the traceH[read(5)].

spec of programx.write(3) is H[write(3)]∗

• Applying merge: a trace ofx.read() | x.write(3) is

H[read(5), write(3)], an invalid trace.

37

Parallel executions may not be independent
• The complete program is

int x = 0

x.read() | x.write(3)

• The declaration “intx = 0” induces a filter transformer,x.int.

It rejects all traces that are not possible with the resource.

• Given specsp and q of x.read() and x.write(3), spec of

int x = 0

x.read() | x.write(3)

is x.int(p | q)

38

Research Area

• Each shared resource is defined by a filter.

• Each filter is an acceptor of strings, i.e., a formal language.

• So, a shared resource can be specified as a language.

• The language may include infinite strings, say, for strong
semaphore.

• I have defined filters for
read/write shared variables,
write-once variables,
channel,
weak and strong semaphore

39

Recursion: Procedurestut()

• Toss an unfair coin
if it lands Heads halt, otherwise callstut().

• Let the spec ofstut() be x.

• stut() chooses between

• halting the computation (when toss lands Heads), with spec
H[Heads]∗, and

• eventTails followed by stut(), with speccons(Tails, x)

• The transformer for choice is set union.

• x = H[Heads]∗ ∪ cons(Tails, x)

40

Recursion: Procedurestut()

• Toss an unfair coin
if it lands Heads halt, otherwise callstut().

• Let the spec ofstut() be x.

• stut() chooses between

• halting the computation (when toss lands Heads), with spec
H[Heads]∗, and

• eventTails followed by stut(), with speccons(Tails, x)

• The transformer for choice is set union.

• x = H[Heads]∗ ∪ cons(Tails, x)

40

Recursion: Procedurestut()

• Toss an unfair coin
if it lands Heads halt, otherwise callstut().

• Let the spec ofstut() be x.

• stut() chooses between

• halting the computation (when toss lands Heads), with spec
H[Heads]∗, and

• eventTails followed by stut(), with speccons(Tails, x)

• The transformer for choice is set union.

• x = H[Heads]∗ ∪ cons(Tails, x)

40

Solutions of recursive equation:x = F(x)

• Extensively studied in denotational semantics wherex, called a
point, is from acomplete partial order(CPO).

• There is a partial order⊆ in the cpo.

• There is a bottom element,⊥.

• Every chainx0 ≤ x1... has a least upper bound (lub)y:

xi ⊆ y upper bound
y ⊆ z for any upper boundz.

• A solution of x = F(x) is a fixed point ofF.

Wanted: the least fixed point,lfp(F), according to ⊆.

41

Kleene-Scott Theorem

• F is continuousmeans:
For every chainC, F(lub(C)) = lub(F(C)).

• Theorem: Given x = F(x) where F is continuous:

lfp(F) = lub(Fi(W[]))

• That is, with

x0 = ⊥, xi+1 = F(xi),

lfp(F) = lub(x0, ..., xi , ...)

42

In the current work

Specs form a complete partial order, where

• the order relation is subset order over specs,lub is set union,

• ⊥ is the W[],

• F, a smooth transformer is always continuous.

• Proposition: lfp(F) is the expected outcome in an execution.

43

Example: stut()

• Recursive equation:x = H[Heads]∗ ∪ cons(Tails, x)

• lfp(stut) = {H[Tailsj , Heads] j ≥ 0}∗

• This isnot the correct solution.
Does not include the infinite trace.

The fixed point should include the limit of all trace chains.

44

Upward Closure

• Two notions of chains:

• specs:p0 ⊆ p1.... lub is the union of thepis.

• traces: ChainC = t0 ≤ t1....

• Limit of the trace chain,lim(C), is a trace.
Shortest trace that includes everyti as a prefix.

• Define upward closure of specp as
p∗ = p∪ {lim(C) C a chain inp}

• Follows: for specs,(p× q · · · × r)∗ = p∗ × q∗ · · · × r∗

45

least upward-closed fixed point (lufp)

• For recursive equationx = F(x),
the least upward-closed fixed pointp is a spec such that:

p = F(p) fixed point

p = p∗ upward-closed

p ⊆ q for any upward-closed fixed pointq

Note: p is a spec, so downward-closed.

• lufp(F) may not exist for smoothF.

46

least upward-closed fixed point (lufp)

• For recursive equationx = F(x),
the least upward-closed fixed pointp is a spec such that:

p = F(p) fixed point

p = p∗ upward-closed

p ⊆ q for any upward-closed fixed pointq

Note: p is a spec, so downward-closed.

• lufp(F) may not exist for smoothF.

46

Bismooth Transformer

• Smooth: f (p∗) = f ∗(p), for any tracesetp

• Bismooth:

Smooth (preserve downward-closure)

Spec p: f (p∗) = f ∗(p) (preserve upward-closure)

Fairness is smooth but not bismooth.

Unfair merge is bismooth, fair merge only smooth.

Continuous filter is bismooth, discontinuous filter only smooth.

All other transformers seen so far are bismooth.

47

Bismooth Transformer

• Smooth: f (p∗) = f ∗(p), for any tracesetp

• Bismooth:

Smooth (preserve downward-closure)

Spec p: f (p∗) = f ∗(p) (preserve upward-closure)

Fairness is smooth but not bismooth.

Unfair merge is bismooth, fair merge only smooth.

Continuous filter is bismooth, discontinuous filter only smooth.

All other transformers seen so far are bismooth.

47

lufp of bismooth transformer

Theorem: For bismoothF, lufp(F) = lfp∗(F)

48

Revisit stut()
• Recursive equation:x = H[Heads]∗ ∪ cons(Tails, x)

• lfp(stut) = {H[Tailsj , Heads] j ≥ 0}∗

• lufp(stut())
= {From theorem}

lfp∗(stut())
= { lfp(stut) = {H[Tailsj , Heads] j ≥ 0}∗}

({H[Tailsj , Heads] j ≥ 0}∗)∗

= {computing}
{H[Tailsj , Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

• Toss of a fair coin:
fair_filter({H[Tailsj , Heads] j ≥ 0}∗ ∪ {D[Tailsω]})

= {Definition of fair_filter }
{H[Tailsj , Heads] j ≥ 0}∗

49

Revisit stut()
• Recursive equation:x = H[Heads]∗ ∪ cons(Tails, x)

• lfp(stut) = {H[Tailsj , Heads] j ≥ 0}∗

• lufp(stut())
= {From theorem}

lfp∗(stut())
= { lfp(stut) = {H[Tailsj , Heads] j ≥ 0}∗}

({H[Tailsj , Heads] j ≥ 0}∗)∗

= {computing}
{H[Tailsj , Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

• Toss of a fair coin:
fair_filter({H[Tailsj , Heads] j ≥ 0}∗ ∪ {D[Tailsω]})

= {Definition of fair_filter }
{H[Tailsj , Heads] j ≥ 0}∗

49

