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Denotational Semantics of Concurrent Systems

• Scott’s denotational semantics specialized to concurrentsystems.

• Strong results for this specific domain.

• Inappropriate for other areas, such as sequential programs.

• Derive specification of a program from those of its components.

• Prove program properties (safety, progress) from the
specification.
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Denotational Semantics

• f ⊕ g is a program constructed out of

componentsf and g, and

combinator⊕, a programming language construct.

• The specification off ⊕ g, [[f ⊕ g]] is given by:

[[f ⊕ g]] ∆ [[f ]] [[⊕]] [[g]]

• [[⊕]] is atransformerof specifications:

It combines two specifications,[[f ]] and [[g]], to yield a
specification.

Notation Overloading: use⊕ instead of [[⊕]].
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Contributions of this work

• specifications of concurrent components.

• A theory of transformers: functions mapping specs to specs.

• Provingsafety, progress, branching timeproperties with:

concurrency

non-determinacy

recursion

shared resource

fairness

divergence

real-time
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Status

• Completed the theoretical work

• Currently being applied to Orc calculus

• Need to do considerable work in verification engineering

• logic for specification

• applications to other process algebras

• mechanization
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Summary

Closure Meaning Preserving Corresponding
Transformer Function

Downward Prefix-closed Smooth Monotonic
Upward Limit-closed Bismooth Continuous

• A library of smooth and bismooth transformers.

• Fixed-point theorems:
• Least upward-closed fixed point
• Min-max fixed point (to deal with fairness)
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Component Specification

• Events.

• Traces.

• A specification is a prefix-closed set of traces.
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Events associated with a component

pub(true) publish (output) a value

x.read(3) read a value from variablex

c.receive(”val”) receive ”val” from channelc

Heads/Tails outcome of an internal coin toss

x.add(5) Method call

• Events are event instances.

• They are uninterpreted, instantaneous and atomic.

• There is a universal event alphabet.
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Execution of a component (informal notion)

An execution is a sequence of events.

Toss a coin and publish the outcome.
Two possible executions:

[Heads, pub(”Heads”)]
[Tails, pub(”Tails”)]

With all intermediate executions:

[ ]
[Heads]
[Heads, pub(”Heads”)]
[Tails]
[Tails, pub(”Tails”)]
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Another Program

Two tosses, but stop if the first toss is Heads

[Heads]
[Tails, Heads]
[Tails, Tails]

Plus all the prefixes of these sequences.
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Depict Executions by a tree

Two tosses, but stop if the first toss is Heads

[Heads], [Tails, Heads], [Tails, Tails] plus the prefixes.

• Each node is an execution.

• Label on each branch is an event.

• An ancestor is a prefix.
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Infinite Executions

Toss a coin repeatedly until it lands Heads.

[ ]
[Heads] [Tails]
[Tails, Heads] [Tails, Tails]
[Tails, Tails, Heads] [Tails, Tails, Tails]
[Tails, Tails, Tails, Heads] · · ·

• An unfair coin may may always land Tails.

• Admit infinite execution: [Tails, Tails, Tails, · · · ]

• Executions described by:
{[Tailsj ] j ≥ 0} ∪ {[Tailsj , Heads] j ≥ 0} ∪ {[Tailsω ]}
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Status of an Execution
• Status denotes the final state of an execution. From{W, H, D}.

• Infinite execution has statusD.

• Finite executions typically have statusH or W. Some haveD.

W is Waiting:
more autonomous computation to do or waiting for external input.

H is Halted: nothing more to do.

D is Divergent: An infinite computation.

• Example of Divergent Execution

def loop( ) = loop( )
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Trace

A traceis s[m] where

• s, status, is from {W, H, D}.

• mfinite or infinite event sequence.
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Trace (formal notion)
Trace: A sequence of events plus the final state of computation.

Toss a coin and publish the outcome. Possible traces are:

W[ ] W[Heads] W[Tails]
W[Heads, pub(”Heads”)] W[Tails, pub(”Tails”)]
H[Heads, pub(”Heads”)] H[Tails, pub(”Tails”)]
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Trace prefix

In the trace tree, prefix of a node is an ancestor.

Formally, s[m] ≤ s′[m′], means

s[m] = s′[m′], or

(s = W) and(m prefix ofm′)

Applies to infinite traces.

• ≤ is a partial order.

• < is a well-founded order.

• W[ ] is the bottom trace.
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Prefix Closure (downward closure)

Prefix closure of tracet is the set of all its prefixes:

t∗ = {s s≤ t}

For traceset (non-empty set of traces)p define downward closure by:

p∗ = ∪t∈p(t∗), for non-emptyp

(p× q× · · · × r)∗ = p∗ × q∗ · · · × r∗ Cartesian Product
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Spec

• A specification (spec) is a prefix-closed set of traces.

• Definition: Tracesetp is a spec iff p = p∗.

• Note: A spec is always non-empty.
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Meaning of a component spec

• Each trace in a spec is a possible execution in some environment.

• So, a spec is prefix-closed.

• W[m] without extension denotes deadlock.

• Eventual halting:

• Every waiting trace has an extension by an autonomous event.
• There is no divergent trace.
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Example spec: successor

• suc(x) publishes the successor of the argument integerx.

• spec: {H[read(i), pub(i + 1)] i integer}∗
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Example spec: conditional

• Ift(b) for booleanb
• publishessignalfor b = true

• halts silently for b = false

• spec:{H[read(false)], H[read(true), pub(signal)]}∗
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Tree depiction of a spec is insufficient

Toss a coin sequentially until it lands Heads.

unfair coin: {H[Tailsj , Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

fair coin: {H[Tailsj , Heads] j ≥ 0}∗

Explicit inclusion/exclusion of infinite traces in a spec.
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Transformers

Denotational Semantics (repeated)

• f ⊕ g is a program constructed out of

componentsf and g, and

combinator ⊕, a programming language construct.

• The specification off ⊕ g, [[f ⊕ g]] is given by:

[[f ⊕ g]] ∆ [[f ]][[⊕]][[g]]

• [[⊕]] is atransformer:

It combines two specifications,[[f ]] and [[g]], to yield a
specification.

Notation Overloading: use⊕ instead of [[⊕]].
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A Motivating Example

• Programming language construct,⊕: ⊕ (A, B, C)

• ExecuteA, B concurrently.

• If A engages ineand B in e, they rendezvous.
Then startC to run concurrently withA and B.
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A Motivating Example: ⊕ (A, B, C)

• Let specifications ofA, B, C be p, q, r, respectively.

• C′ starts with eventa and then behaves asC:
spec iscons(a, r).

• spec of A, B, C′ running concurrently:p | q | cons(a, r).

• Retain those traces in which{e, e, a} are contiguous.
Replace these 3 events by eventτ :
rendezvous({e, e, a}, τ, (p | q | cons(a, r)))

• Drop the τ symbol from each trace:
⊕′ (p, q, r) =

drop(τ, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))
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Example Transformer: Sequential Composition,f ; g

• g starts executing when and only whenf halts.

• A trace of f ; g is of the form:

• s[m] where s[m] is a trace off and s is W or D, or

• s[m n] where

H[m] is a trace off

s[n] is a trace ofg

26



Example Transformer: Sequential Composition,f ; g

• g starts executing when and only whenf halts.

• A trace of f ; g is of the form:

• s[m] where s[m] is a trace off and s is W or D, or

• s[m n] where

H[m] is a trace off

s[n] is a trace ofg

26



Example Transformer: parallel composition,f | g

• f and g execute independently.

• Let s[m] be a trace off , t[n] of g, sand t from {H, W}.

Then, f | g includes traces(s∩ t)(m⊗ n) where:

• ∩ symmetric. H ∩ s = s, W∩ W = W.

• m⊗ n is all interleavings (merge) ofm and n.

• Merging with infinite sequence:fair andunfair merge.
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Definition: Transformer, Trace-wise Transformer

• A transformer is a function that maps a tuple of specs to a spec:
f (p, q, · · · , r)

Notation: Infix p⊕ q for 2-tuple transformer .

• Tracewise-transformer: Maps a tuple oftracesto a traceset.
Then,

f (p) = ∪{f (t) t ∈ p}

p⊕ q = ∪{s⊕ t s∈ p, t ∈ q}

• Henceforth all transformers are tracewise.

When is f (p) a spec given thatp is a spec?
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Smooth Transformer

• A smoothtransformer preserves prefix closure.

• Smooth Transformer: For any traces,

f ∗(s) = f (s∗) (Notation: f ∗(s) is (f (s))∗)
(s⊕ t)∗ = s∗ ⊕ t∗
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Properties of smooth transformers

• For smoothf and specp, f ∗(p) = f (p∗).

• Follows: A smooth transformer transforms specs to specs.

• Composition of smooth transformers is smooth.

• f is smooth iff
• f transforms specs to specs, and

• f is monotonic: s≤ t ⇒ f ∗(s) ⊆ f ∗(t).
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Example of Smooth Transformer: choice

• f or g: choose to execute eitherf or g

transformer: sor t = {s} ∪ {t}

• or is smooth.
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Example of Smooth Transformer: cons

• Append a specific eventa as the first event of every trace.

• cons(a, W[ ]) = {W[ ], W[a]}

cons(a, s[m]) = {s[a m]}
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Example of Smooth Transformer: Filter

• A filter transformer accepts or rejects each trace.

• A filter is defined by a predicateb on traces, where

1. b(W[ ]) holds, and

2. If b(t) holds thenb(s) holds for all prefixess of t.

• A filter transformer accepts all prefixes for whichb holds.

f (t) = {s b(s) ∧ s≤ t}
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Examples of Smooth transformers

• unfair merge: f | g

• fair merge: f | ′g

• rendezvous: merge traces so that eventseand e′ are contiguous.

• sequential composition:f ; g

H[m] ; t[n] = {t[m n]},

s ; t[n] = {s}, otherwise
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Fairness

• Coin tosses are fair.

• Fair scheduler: In a multiprocess implementation every process
gets to execute eventually.

• A semaphore is granted fairly.

• Any finite interval in time can contain only a finite number of
events.
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Fairness is a filter transformer

• The transformer accepts all finite traces,
accepts the fair infinite traces and rejects the unfair ones.

• Fits the definition of a filter, a smooth transformer.

Example: coin toss forever until Heads appears.

• unfair coin:

{H[Tailsj , Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

• fair coin: Apply the filter that rejects the infinite sequenceof
Tails.

{H[Tailsj , Heads] j ≥ 0}∗
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Shared Resource

• Considerx.read() | x.write(3),
where local variablex is initialized to 0.

• spec of x.read() includes the traceH[read(5)].

spec of programx.write(3) is H[write(3)]∗

• Applying merge: a trace ofx.read() | x.write(3) is

H[read(5), write(3)], an invalid trace.
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Parallel executions may not be independent
• The complete program is

int x = 0

x.read() | x.write(3)

• The declaration “intx = 0” induces a filter transformer,x.int.

It rejects all traces that are not possible with the resource.

• Given specsp and q of x.read() and x.write(3), spec of

int x = 0

x.read() | x.write(3)

is x.int(p | q)
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Research Area

• Each shared resource is defined by a filter.

• Each filter is an acceptor of strings, i.e., a formal language.

• So, a shared resource can be specified as a language.

• The language may include infinite strings, say, for strong
semaphore.

• I have defined filters for
read/write shared variables,
write-once variables,
channel,
weak and strong semaphore
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Recursion: Procedurestut()

• Toss an unfair coin
if it lands Heads halt, otherwise callstut().

• Let the spec ofstut() be x.

• stut() chooses between

• halting the computation (when toss lands Heads), with spec
H[Heads]∗, and

• eventTails followed by stut(), with speccons(Tails, x)

• The transformer for choice is set union.

• x = H[Heads]∗ ∪ cons(Tails, x)
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Solutions of recursive equation:x = F(x)

• Extensively studied in denotational semantics wherex, called a
point, is from acomplete partial order(CPO).

• There is a partial order⊆ in the cpo.

• There is a bottom element,⊥.

• Every chainx0 ≤ x1... has a least upper bound (lub)y:

xi ⊆ y upper bound
y ⊆ z for any upper boundz.

• A solution of x = F(x) is a fixed point ofF.

Wanted: the least fixed point,lfp(F), according to ⊆.
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Kleene-Scott Theorem

• F is continuousmeans:
For every chainC, F(lub(C)) = lub(F(C)).

• Theorem: Given x = F(x) where F is continuous:

lfp(F) = lub(Fi(W[ ]))

• That is, with

x0 = ⊥, xi+1 = F(xi),

lfp(F) = lub(x0, ..., xi , ...)

42



In the current work

Specs form a complete partial order, where

• the order relation is subset order over specs,lub is set union,

• ⊥ is the W[ ],

• F, a smooth transformer is always continuous.

• Proposition: lfp(F) is the expected outcome in an execution.
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Example: stut()

• Recursive equation:x = H[Heads]∗ ∪ cons(Tails, x)

• lfp(stut) = {H[Tailsj , Heads] j ≥ 0}∗

• This isnot the correct solution.
Does not include the infinite trace.

The fixed point should include the limit of all trace chains.
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Upward Closure

• Two notions of chains:

• specs:p0 ⊆ p1.... lub is the union of thepis.

• traces: ChainC = t0 ≤ t1....

• Limit of the trace chain,lim(C), is a trace.
Shortest trace that includes everyti as a prefix.

• Define upward closure of specp as
p∗ = p∪ {lim(C) C a chain inp}

• Follows: for specs,(p× q · · · × r)∗ = p∗ × q∗ · · · × r∗
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least upward-closed fixed point (lufp)

• For recursive equationx = F(x),
the least upward-closed fixed pointp is a spec such that:

p = F(p) fixed point

p = p∗ upward-closed

p ⊆ q for any upward-closed fixed pointq

Note: p is a spec, so downward-closed.

• lufp(F) may not exist for smoothF.
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Bismooth Transformer

• Smooth: f (p∗) = f ∗(p), for any tracesetp

• Bismooth:

Smooth (preserve downward-closure)

Spec p: f (p∗) = f ∗(p) (preserve upward-closure)

Fairness is smooth but not bismooth.

Unfair merge is bismooth, fair merge only smooth.

Continuous filter is bismooth, discontinuous filter only smooth.

All other transformers seen so far are bismooth.
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lufp of bismooth transformer

Theorem: For bismoothF, lufp(F) = lfp∗(F)
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Revisit stut()
• Recursive equation:x = H[Heads]∗ ∪ cons(Tails, x)

• lfp(stut) = {H[Tailsj , Heads] j ≥ 0}∗

• lufp(stut())
= {From theorem}

lfp∗(stut())
= { lfp(stut) = {H[Tailsj , Heads] j ≥ 0}∗}

({H[Tailsj , Heads] j ≥ 0}∗)∗

= {computing}
{H[Tailsj , Heads] j ≥ 0}∗ ∪ {D[Tailsω]}

• Toss of a fair coin:
fair_filter({H[Tailsj , Heads] j ≥ 0}∗ ∪ {D[Tailsω]})

= {Definition of fair_filter }
{H[Tailsj , Heads] j ≥ 0}∗
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