Describing Simulations in the Orc Programming
Language

David Kitchin, Adrian Quark, Jayadev Misra

Department of Computer Science
University of Texas at Austin

23rd ACM/IEEE/SCS Workshop on Principles of Advanced and
Distributed Simulation (PADS 2009)
June 22-25, 2009
Lake Placid, New York, USA

Simulation as Concurrent Programming

¢ A simulation description is a real-time concurrent program

e The concurrent program includes physical entities and thei
interactions.

e The concurrent program specifies the time interval for i

Features needed in the Concurrent Programming Langt

Describe entities and their interactions.

Describe passage of time.

Allow birth and death of entities.

Allow programming novel interactions.

Support hierarchical structure.

Orc

Goat Internet scripting language.
Next Component integration language.

Next A general purpose, structured “concurrent programming
language”.

A very late realization A simulation language.

Internet Scripting

Contact two airlines simultaneously for price quotes.

Buy a ticket if the quote is at most $300.

Buy the cheapest ticket if both quotes are above $300.
Buy a ticket if the other airline does not give a timely quote.

Notify client if neither airline provides a timely quote.

OrcBasics

e Site Basic service or component.
e Concurrencycombinatordor integrating sites.
e Theory includes nothing other than the combinators.

No notion of data type, thread, process, channel,
synchronization, parallelism - -

New concepts are programmed using the combinators.

Examples of Sites
+ —x&& || < =..

println, random Pronpt, Emai | ...

Ref , Semaphor e, Channel , Dat abase ...

Ti mer

External ServicesGoogle Search, MySpace, CNN, ...

Any Java Class instance

Sites that create siteMakeSemaphor e, MakeChannel ...

Humans

Sites

e Asite is called like a procedure with parameters.
e Site returns at most one value.
¢ The value ipublished

Site calls arestrict

Overview of Orc

e Orc program has

e agoalexpression,
e a set of definitions.

e The goal expression is executed. Its execution

e callssites
e publishesralues

Structure of Orc Expression

e Simple just a site call, CNN(d)
Publishes the value returned by the site.

e Compositionof two Orc expressions:

Structure of Orc Expression

e Simple just a site call, CNN(d)
Publishes the value returned by the site.

e Compositionof two Orc expressions:

dof andgin parallel f|g Symmetric composition

Structure of Orc Expression

e Simple just a site call, CNN(d)
Publishes the value returned by the site.

e Compositionof two Orc expressions:

dof andgin parallel f|g Symmetric composition
for all x fromf dog f >x>g Sequential composition

Structure of Orc Expression

e Simple just a site call, CNN(d)
Publishes the value returned by the site.

e Compositionof two Orc expressions:

dof andgin parallel f|g Symmetric composition
for all x fromf dog f >x>g Sequential composition
for somexfromgdof f <x<g Pruning

Symmetric compositionf | g

e Evaluatef and gindependently.
e Publish all values from both.

e No direct communication or interaction betweémnd g.
They can communicate only through sites.

Example CNN(d) | BBC(d)

callsboth CNN and BBC simultaneously.
Publishes values returned by both site8, (L or 2 values)

Sequential compositionf >x> g

For all values published by do g.
Publish only the values frong.
e CNN(d) >x> Email(address, X)

e Call CNN(d).

e Bind result (if any) tox.

e Call Email(address, x).

e Publish the value, if any, returned ymail.

e (CNN(d) | BBC(d)) >x> Email(address, x)

e May call Email twice.
e Publishes up to two values frolamail.

Notation f >gfor f >x>g, if xunused ing.

Schematic of Sequential composition

g0 gl g2

Figure:Schematic off >x> g

Pruning: (f <x< Q)

For some value published by do f.

e Evaluatef and gin parallel.

¢ Site calls that need are suspended.
e see (M() |N(x) <x<g

e When greturns a (first) value:

¢ Bind the value tox.
e Terminateg.
e Resume suspended calls.

e Values published byf are the values off <x< g).

Example of Pruning

Email (address, x) <x< (CNN(d) | BBC(d))

Binds x to the first value fromCNN(d) | BBC(d).
Sends at most one email.

Some Fundamental Sites

if (b): booleanb,
returns asignalif bis true; remainsilentif bis false.

Rtimer (t): integer t, t > 0, returns a signat time units later.
stop: never responds. Same égfalse).

signal: returns a signal immediately. Same @strue).

Expression Definition

def MailOnce(a) =
Email(a,m) <m< (CNN(d) | BBC(d))

def MailLoop(a,t) =
MailOnce(a) > Rtimer(t) > MailLoop(a,t)

def metronome() = signal | (Rtimer(1) > metronome())
metronome() > stockQuote()

e Expression is called like a procedure.
It may publish many valuesMailLoop does not publish.
¢ Site calls are strict; expression calls non-strict.

Functional Core Language

Data TypesNumber, Boolean, String, with usual operators
Conditional Expressianf E thenF elseG

Data structuresTuple and List

Pattern Matching

Function Definition; Closure

Variable Binding; Silent expression

val x=1+2
val y= X+ X
val z= x/0- - expression is silent

val u= if (0 <5)then0elsez

Comingling with Orc expressions

Components of Orc expression could be functional.
Components of functional expression could be Orc.

(1+2) | (2+3)
1[2)+(2[3)

Convention whenever expressiofr appears in contexC where a
single value is expected frorft, convert it to C[x] <x< F.

1+2[2+3 is add(1,2) | add(2,3)

(11]12)+(213) is (add(x,y) <x< (1]2)) <y< (2 |3)

Example: Fibonacci numbers

{- Goal expression -}
Fib(5)

Some Typical Applications

o Adaptive Workflow(Business process management):
Workflow lasting over months or years
Security, Failure, Long-lived Data

e Extended 911
Using humans as components
Components join and leave
Real-time response

e Network simulation
Experiments with differing traffic and failure modes
Animation

Some Typical Applications, contd.

Grid Computations
Music Composition
Traffic simulation

Computation Animation

Some Typical Applications, contd.

Map-Reducausing a server farm
Thread managemeirt an operating system
Mashupg(Internet Scripting).

Concurrent Programmingn Android.

Time-out

Publish M’s response if it arrives before timg
Otherwise, publishO.

z <z< (M() | (Rtimer(t) > 0)), or

val z= M() | (Rtimer(t) >0)
z

Fork-join parallelism

Call M and N in parallel.
Return their values as a tuple after both respond.

((u,v)
<u< M())
<v< N()

or,

(M(),N())

Recursive definition with time-out

Call a list of sites simultaneously.
Count the number of responses received within 10 time units.

def tally([]) = O
def tally(M: MS) = (M() > 1 | Rtimer(10) > 0) + tally(MS)

Barrier Synchronization irM() >f | N() »g

f and g start only aftetboth M and N complete.
Rendezvous of CSP or CC8®4 and N are complementary actions.

(M(,NQO) > (f [9)

Priority

¢ Publish N’s response asap, but no earlier than 1 unit from now.
Apply fork-join betweenRtimer (1) and N.

val (u,_) = (N(),Rtimer(1))

e Call M, N together.
If M responds within one unit, publish its response.
Else, publish the first response.

val x= M() |u

Mutable Structures

val r = Ref()
rwrite(3) ,orr:=3
r.read() ,orr?

def swapRefs(x,y) = (X?,y7?) >(xVv, W)> (X:= W,y := Xv)

Binary Search Tree; Pointer Manipulation

def search(key) = -- return true or false
searchstart(key) >(_,_,q)> (g # null)

def insert(key) = -- true if value was inserted, false if it was th
searchstart(key) >(p,d,q)>
if g=null

then Ref () >r>
r := (key, null, null) > update(p,d,r) > true
else false

def delete(key) =

Semaphore

val s= Semaphore(2) - - sis a semaphore with initial value 2

s.acquire()
srelease()

Rendezvous:

val s= Semaphore(0)
val t = Semaphore(0)

def send() = t.release() > s.acquire()
def receive() = t.acquire() > s.release()

n-party Rendezvous using(n — 1) semaphores.

Readers-Writers

val req= Buffer()
val cb = Counter()

def rw() =
req.get() >(b,s)>
(if(b) > ch.inc() > srelease() > rw()
| if(-b) > cb.onZero() >
ch.inc() > srelease() > cb.onZero() > rw()

)

def start(b) =
val s= Semaphore(0)
reg.put((b,s)) > s.acquire()

def quit() = cb.dec()

Shortest path problem

¢ Directed graph; non-negative weights on edges.

e Find shortest path from source to sink.

We calculate just the length of the shortest path.

Algorithm with Lights and Mirrors

Source node sends rays of light to each neighbor.
Edge weight is the time for the ray to traverse the edge.

When a node receives its first ray, sends rays to all neighbors
Ignores subsequent rays.

Shortest path length time for sink to receive its first ray.

def eval(u,t) =

Goal :

Algorithm

if tis the first value foru, record it else stop>
for every edg€u, v) of lengthd do

wait for d time units >

eval(v,t+d)

eval (source, 0) |
read the value recorded for thenk

record and read sites

write(u,t): Write value t for nodeu. If already written, block.

read(u): Return value for node. If unwritten, block.

Graph Structure: Functiosucc()

X y Z

Figure:Graph Structure

Succ(u) publishes(x,2), (y,1), (z5).

def eval(u,t) =

Goal :

Algorithm(contd.)

if tis the first value foru, record it else stop>
for every edg€u, v) of lengthd do

wait for d time units >

eval(v,t 4 d)

eval (source, 0) |
read the value recorded for thenk

def eval(u,t) =

Goal :

write(u,t) >
Succ(u) >(v,d)>
Rtimer (d) >
eval(v,t + d)

eval (source, 0) | read(sink)

Algorithm(contd.)

def eval(u,t) = write(u,t) >
Succ(u) >(v,d)>
Rtimer (d) >
eval(v,t + d)
Goal : eval (source, 0) | read(sink)

e Any call to eval(u,t): Length of a path from source ta s t.

e First call to eval(u, t): Length of the shortest path from source to
uis t.

e eval does not publish.

Drawbacks of this algorithm

e Running time proportional to shortest path length.
e Executions ofSucc, read and write should take no time.
Solution Replace calls to Real-timer by calls to Logical-timer.
def eval(u,t) = write(u,t) >
Succ(u) >(v,d)>
Ltimer(d) >

eval(v,t +d)

Goal : eval (source, 0) | read(sink)

Logical Timer

Methods:

Ltimer (t) Returns a signal aftet logical time units.
Ltimer.time() Returns the current value of the logical timer.

Logical timer Implementation

Must guarantee:

e Ltimer(t) consumes exactly units of logical time.

¢ No other site call consumes logical time once its executiarts
(its execution may depend on site calls that consume time).

e Logical timer is advanced only if there can be no other agtivi

Examples

Rtimer (10) | Ltimer(2)
Should logical timer be advanced with passage of real time?

Rtimer (10) > c.put(5) | Ltimer(2)
Does Rtimer(10) > c.put(5) consume logical time?

c.get() | Ltimer(2) > c.put(5)
What are the values oftimer.time() before and afterc.get()?

stop | Ltimer(2)
Can the logical timer be advanced?

Google() | Ltimer(2)
Advance logical timer while waiting foiGoogle() to respond?
What if Google() never responds?

Implementing logical timer

Data structures

e n: current value ofLtimer.time(), initially n= 0.
e (: queue of calls toLtimer () whose responses are pending.

At run time

e Acallto Ltimer.time() immediately responds with.
e Acall to Ltimer(t) is assigned ranki + t and queued.

e Progresslf the program is stuck without advancing the logical
time, then:
remove the item with lowest rank from q,
setn:=r,
respond with a signal to the corresponding callLtibmer ().

Simulation: Bank

Bank with two tellers and one queue for customers.
Customers generated bysaurce process.

When free, a teller serves the first customer in the queue.
Service times vary for customers.

Determine

o Average wait time for a customer.
e Queue length distribution.
¢ Average idle time for a teller.

Structure of bounded simulation

Run the simulation forsimtime.
Below, Bank() never publishes .

val z= Bank() | Ltimer(simtime)

z > Sats()

Description of Bank

def Bank() = (Customers() | Teller() | Teller()) > stop
def Customers() = Source() >c> enter(c)
def Teller () = next() >c>
Ltimer (c.ServTime) >
Teller()
def enter(c) = g.put(c)
def next() = 0.get()

Fast Food Restaurant

Restaurant with one cashier, two cooking stations and oaaeju
for customers.

Customers generated bysaurce process.
When free, cashier serves the first customer in the queue.
Cashier service times vary for customers.

Cashier places the order in another queue for the cooking
stations.

Each order has 3 parts: main entree, side dish, drink
A cooking station processes parts of an order in parallel.

Goal Expression for Restaurant Simulation

val z= Restaurant()() | Ltimer(simtime)

z > Sats()

Description of Restaurant

(Customers() | Cashier() | Cook() | Cook()) > stop

Source() >c> enter(c)

next() >c>

Ltimer (c.ringupTime) >

orders.put(c.order) >

Cashier()

def Cook() = orders.get() >order>

(
prepTime(order.entree) >t> Ltimer(t),
prepTime(order.side) >t> Ltimer(t),
prepTime(order.drink) >t> Ltimer(t)

) > Cook()

g.put(c)

q.9et()

def Restaurant()
def Customers()
def Cashier()

def enter(c)
def next()

Collecting Statistics: waiting time

Change
def enter(c) = g.put(c)
def next() = 0.get()
to
def enter(c) = Ltimer.time() >s> q.put(c,s)
def next() = q.0et() >(c,t)>

Ltimer.time() >s>
report\Wait(s — t) >
c

Stopwatch

A stopwatchs aligned with some timer, real or virtual.
Supports 4 methods:

e reset

e read

e start

e stop

Histogram: Queue length

CreateN + 1 stopwatchessw|0..N], at the beginning of
simulation.

Final value of sw(i], 0 <i < N, is the duration for which the
gqueue length has been

sw[N] is the duration for which the queue length is at lehist
On adding an item to queue of length0 <i < N, do

swii].stop | swfi + 1].start
After removing an item if the queue lengthis 0 < i < N, do

swli].start | sw(i + 1].stop

Simulation Layering

A simulation is written a set of layers.
Lowest layer represents the abstraction of the physicéésys

Next layer may collect statistics, by monitoring the layeldw
it.

Further layers may produce reports and animations from the
statistics.

