
Describing Simulations in the Orc Programming
Language

David Kitchin, Adrian Quark, Jayadev Misra

Department of Computer Science
University of Texas at Austin

23rd ACM/IEEE/SCS Workshop on Principles of Advanced and
Distributed Simulation (PADS 2009)

June 22-25, 2009
Lake Placid, New York, USA

Simulation as Concurrent Programming

• A simulation description is a real-time concurrent program.

• The concurrent program includes physical entities and their
interactions.

• The concurrent program specifies the time interval for activities.

Features needed in the Concurrent Programming Language

• Describe entities and their interactions.

• Describe passage of time.

• Allow birth and death of entities.

• Allow programming novel interactions.

• Support hierarchical structure.

Orc

• Goal: Internet scripting language.

• Next: Component integration language.

• Next: A general purpose, structured “concurrent programming
language”.

• A very late realization: A simulation language.

Internet Scripting

• Contact two airlines simultaneously for price quotes.

• Buy a ticket if the quote is at most $300.

• Buy the cheapest ticket if both quotes are above $300.

• Buy a ticket if the other airline does not give a timely quote.

• Notify client if neither airline provides a timely quote.

-

OrcBasics

• Site: Basic service or component.

• Concurrencycombinatorsfor integrating sites.

• Theory includes nothing other than the combinators.

No notion of data type, thread, process, channel,
synchronization, parallelism· · ·

New concepts are programmed using the combinators.

Examples of Sites

• + − ∗ && || < = ...

• println, random, Prompt, Email ...

• Ref, Semaphore, Channel, Database ...

• Timer

• External Services:Google Search, MySpace, CNN, ...

• Any Java Class instance

• Sites that create sites: MakeSemaphore, MakeChannel ...

• Humans
...

Sites

• A site is called like a procedure with parameters.

• Site returns at most one value.

• The value ispublished.

Site calls arestrict.

Overview of Orc

• Orc program has
• agoalexpression,
• a set of definitions.

• The goal expression is executed. Its execution

• callssites,
• publishesvalues.

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning

Symmetric composition:f | g

• Evaluate f and g independently.

• Publish all values from both.

• No direct communication or interaction betweenf and g.
They can communicate only through sites.

Example: CNN(d) | BBC(d)

callsboth CNN and BBC simultaneously.
Publishes values returned by both sites. (0, 1 or 2 values)

Sequential composition:f >x> g

For all values published byf do g.
Publish only the values fromg.

• CNN(d) >x> Email(address, x)

• Call CNN(d).
• Bind result (if any) tox.
• Call Email(address, x).
• Publish the value, if any, returned byEmail.

• (CNN(d) | BBC(d)) >x> Email(address, x)

• May call Email twice.
• Publishes up to two values fromEmail.

Notation: f ≫ g for f >x> g, if x unused ing.

Schematic of Sequential composition

f

g1g0 g2

Figure:Schematic off >x> g

Pruning: (f <x< g)

For some value published byg do f .

• Evaluate f and g in parallel.

• Site calls that needx are suspended.
• see (M() | N(x)) <x< g

• When g returns a (first) value:

• Bind the value tox.
• Terminateg.
• Resume suspended calls.

• Values published byf are the values of(f <x< g).

Example of Pruning

Email(address, x) <x< (CNN(d) | BBC(d))

Binds x to the first value fromCNN(d) | BBC(d).
Sends at most one email.

Some Fundamental Sites

• if (b): booleanb,
returns asignalif b is true; remainssilent if b is false.

• Rtimer(t): integer t, t ≥ 0, returns a signalt time units later.

• stop: never responds. Same asif (false).

• signal: returns a signal immediately. Same asif (true).

Expression Definition

def MailOnce(a) =
Email(a, m) <m< (CNN(d) | BBC(d))

def MailLoop(a, t) =
MailOnce(a) ≫ Rtimer(t) ≫ MailLoop(a, t)

def metronome() = signal | (Rtimer(1) ≫ metronome())
metronome() ≫ stockQuote()

• Expression is called like a procedure.
It may publish many values.MailLoop does not publish.

• Site calls are strict; expression calls non-strict.

Functional Core Language

• Data Types: Number, Boolean, String, with usual operators

• Conditional Expression: if E thenF elseG

• Data structures: Tuple and List

• Pattern Matching

• Function Definition; Closure

Variable Binding; Silent expression

val x = 1 + 2

val y = x + x

val z = x/0 -- expression is silent

val u = if (0 < 5) then0 elsez

Comingling with Orc expressions

Components of Orc expression could be functional.
Components of functional expression could be Orc.

(1 + 2) | (2 + 3)

(1 | 2) + (2 | 3)

Convention: whenever expressionF appears in contextC where a
single value is expected fromF, convert it to C[x] <x< F.

1 + 2 | 2 + 3 is add(1, 2) | add(2, 3)

(1 | 2) + (2 | 3) is (add(x, y) <x< (1 | 2)) <y< (2 | 3)

Example: Fibonacci numbers

def H(0) = (1, 1)
def H(n) = H(n − 1) >(x, y)> (y, x + y)

def Fib(n) = H(n) >(x, _)> x

{- Goal expression -}
Fib(5)

Some Typical Applications

• Adaptive Workflow(Business process management):
Workflow lasting over months or years
Security, Failure, Long-lived Data

• Extended 911:
Using humans as components
Components join and leave
Real-time response

• Network simulation:
Experiments with differing traffic and failure modes
Animation

Some Typical Applications, contd.

• Grid Computations

• Music Composition

• Traffic simulation

• Computation Animation

Some Typical Applications, contd.

• Map-Reduceusing a server farm

• Thread managementin an operating system

• Mashups(Internet Scripting).

• Concurrent Programmingon Android.

Time-out

Publish M’s response if it arrives before timet,
Otherwise, publish0.

z <z< (M() | (Rtimer(t) ≫ 0)), or

val z = M() | (Rtimer(t) ≫ 0)
z

Fork-join parallelism

Call M and N in parallel.
Return their values as a tuple after both respond.

((u, v)
<u< M())
<v< N()

or,

(M(), N())

Recursive definition with time-out

Call a list of sites simultaneously.
Count the number of responses received within 10 time units.

def tally([]) = 0
def tally(M : MS) = (M() ≫ 1 | Rtimer(10) ≫ 0) + tally(MS)

Barrier Synchronization inM() ≫ f | N() ≫ g

f and g start only afterboth M and N complete.
Rendezvous of CSP or CCS;M and N are complementary actions.

(M(), N()) ≫ (f | g)

Priority

• Publish N’s response asap, but no earlier than 1 unit from now.
Apply fork-join betweenRtimer(1) and N.

val (u, _) = (N(), Rtimer(1))

• Call M, N together.
If M responds within one unit, publish its response.
Else, publish the first response.

val x = M() | u

Mutable Structures

val r = Ref ()

r.write(3) , or r := 3
r.read() , or r?

def swapRefs(x, y) = (x?, y?) >(xv, yv)> (x := yv, y := xv)

Binary Search Tree; Pointer Manipulation

def search(key) = -- return true or false
searchstart(key) >(_, _, q)> (q 6= null)

def insert(key) = -- true if value was inserted, false if it was there
searchstart(key) >(p, d, q)>
if q = null

then Ref () >r>
r := (key, null, null) ≫ update(p, d, r) ≫ true

else false

def delete(key) =

Semaphore

val s = Semaphore(2) -- s is a semaphore with initial value 2

s.acquire()
s.release()

Rendezvous:

val s = Semaphore(0)
val t = Semaphore(0)

def send() = t.release() ≫ s.acquire()
def receive() = t.acquire() ≫ s.release()

n-party Rendezvous using2(n − 1) semaphores.

Readers-Writers

val req = Buffer()
val cb = Counter()

def rw() =
req.get() >(b, s)>

(if (b) ≫ cb.inc() ≫ s.release() ≫ rw()
| if (¬b) ≫ cb.onZero() ≫

cb.inc() ≫ s.release() ≫ cb.onZero() ≫ rw()
)

def start(b) =
val s = Semaphore(0)
req.put((b, s)) ≫ s.acquire()

def quit() = cb.dec()

Shortest path problem

• Directed graph; non-negative weights on edges.

• Find shortest path from source to sink.

We calculate just the length of the shortest path.

Algorithm with Lights and Mirrors

• Source node sends rays of light to each neighbor.

• Edge weight is the time for the ray to traverse the edge.

• When a node receives its first ray, sends rays to all neighbors.
Ignores subsequent rays.

• Shortest path length= time for sink to receive its first ray.

Algorithm

def eval(u, t) = if t is the first value foru, record it else stop≫

for every edge(u, v) of lengthd do
wait for d time units ≫

eval(v, t + d)

Goal : eval(source, 0) |
read the value recorded for thesink

record and read sites

write(u, t): Write value t for nodeu. If already written, block.

read(u): Return value for nodeu. If unwritten, block.

Graph Structure: FunctionSucc()

u

x y z

2 1 5

Figure:Graph Structure

Succ(u) publishes(x, 2), (y, 1), (z, 5).

Algorithm(contd.)

def eval(u, t) = if t is the first value foru, record it else stop≫

for every edge(u, v) of lengthd do
wait for d time units ≫

eval(v, t + d)

Goal : eval(source, 0) |
read the value recorded for thesink

———————————-
def eval(u, t) = write(u, t) ≫

Succ(u) >(v, d)>
Rtimer(d) ≫

eval(v, t + d)

Goal : eval(source, 0) | read(sink)

Algorithm(contd.)

def eval(u, t) = write(u, t) ≫

Succ(u) >(v, d)>
Rtimer(d) ≫

eval(v, t + d)

Goal : eval(source, 0) | read(sink)

• Any call to eval(u, t): Length of a path from source tou is t.

• First call to eval(u, t): Length of the shortest path from source to
u is t.

• eval does not publish.

Drawbacks of this algorithm

• Running time proportional to shortest path length.

• Executions ofSucc, read and write should take no time.

Solution: Replace calls to Real-timer by calls to Logical-timer.

def eval(u, t) = write(u, t) ≫

Succ(u) >(v, d)>
Ltimer(d) ≫

eval(v, t + d)

Goal : eval(source, 0) | read(sink)

Logical Timer

Methods:

Ltimer(t) Returns a signal aftert logical time units.
Ltimer.time() Returns the current value of the logical timer.

Logical timer Implementation

Must guarantee:

• Ltimer(t) consumes exactlyt units of logical time.

• No other site call consumes logical time once its execution starts
(its execution may depend on site calls that consume time).

• Logical timer is advanced only if there can be no other activity.

Examples

• Rtimer(10) | Ltimer(2)
Should logical timer be advanced with passage of real time?

• Rtimer(10) ≫ c.put(5) | Ltimer(2)
Does Rtimer(10) ≫ c.put(5) consume logical time?

• c.get() | Ltimer(2) ≫ c.put(5)
What are the values ofLtimer.time() before and afterc.get()?

• stop | Ltimer(2)
Can the logical timer be advanced?

• Google() | Ltimer(2)
Advance logical timer while waiting forGoogle() to respond?
What if Google() never responds?

Implementing logical timer

Data structures:

• n: current value ofLtimer.time(), initially n = 0.

• q: queue of calls toLtimer() whose responses are pending.

At run time:

• A call to Ltimer.time() immediately responds withn.

• A call to Ltimer(t) is assigned rankn + t and queued.

• Progress: If the program is stuck without advancing the logical
time, then:

remove the item with lowest rankr from q,
set n := r,
respond with a signal to the corresponding call toLtimer().

Simulation: Bank

• Bank with two tellers and one queue for customers.

• Customers generated by asource process.

• When free, a teller serves the first customer in the queue.

• Service times vary for customers.

• Determine

• Average wait time for a customer.
• Queue length distribution.
• Average idle time for a teller.

Structure of bounded simulation

Run the simulation forsimtime.
Below, Bank() never publishes .

val z = Bank() | Ltimer(simtime)

z ≫ Stats()

Description of Bank

def Bank() = (Customers() | Teller() | Teller()) ≫ stop
def Customers() = Source() >c> enter(c)
def Teller() = next() >c>

Ltimer(c.ServTime) ≫

Teller()
def enter(c) = q.put(c)
def next() = q.get()

Fast Food Restaurant

• Restaurant with one cashier, two cooking stations and one queue
for customers.

• Customers generated by asource process.

• When free, cashier serves the first customer in the queue.

• Cashier service times vary for customers.

• Cashier places the order in another queue for the cooking
stations.

• Each order has 3 parts: main entree, side dish, drink

• A cooking station processes parts of an order in parallel.

Goal Expression for Restaurant Simulation

val z = Restaurant()() | Ltimer(simtime)

z ≫ Stats()

Description of Restaurant

def Restaurant() = (Customers() | Cashier() | Cook() | Cook()) ≫ stop
def Customers() = Source() >c> enter(c)
def Cashier() = next() >c>

Ltimer(c.ringupTime) ≫

orders.put(c.order) ≫

Cashier()
def Cook() = orders.get() >order>

(
prepTime(order.entree) >t> Ltimer(t),
prepTime(order.side) >t> Ltimer(t),
prepTime(order.drink) >t> Ltimer(t)

) ≫ Cook()
def enter(c) = q.put(c)
def next() = q.get()

Collecting Statistics: waiting time

Change

def enter(c) = q.put(c)
def next() = q.get()

to

def enter(c) = Ltimer.time() >s> q.put(c, s)
def next() = q.get() >(c, t)>

Ltimer.time() >s>
reportWait(s − t) ≫

c

Stopwatch

A stopwatchis aligned with some timer, real or virtual.
Supports 4 methods:

• reset

• read

• start

• stop

Histogram: Queue length

• CreateN + 1 stopwatches,sw[0..N], at the beginning of
simulation.

• Final value of sw[i], 0 ≤ i < N, is the duration for which the
queue length has beeni.

• sw[N] is the duration for which the queue length is at leastN.

• On adding an item to queue of lengthi, 0 ≤ i < N, do

sw[i].stop | sw[i + 1].start

• After removing an item if the queue length isi, 0 ≤ i < N, do

sw[i].start | sw[i + 1].stop

Simulation Layering

• A simulation is written a set of layers.

• Lowest layer represents the abstraction of the physical system.

• Next layer may collect statistics, by monitoring the layer below
it.

• Further layers may produce reports and animations from the
statistics.

