Bilateral Proofs of Concurrent Programs

Jayadev Misra

Department of Computer Science
University of Texas at Austin

WG 2.3, Jan 2016
Pasadena

L
Agonizing Reappraisal

e Is it realistic to prove concurrent programs in practice?

Need to prove only tightly-coupled programs?

Can they be handled through model-checking?

Could loose-coupled concurrency become the norm,
say through mobile computing?

Agonizing Reappraisal

e Is it realistic to prove concurrent programs in practice?

e Need to prove only tightly-coupled programs?

Can they be handled through model-checking?

Agonizing Reappraisal

e Is it realistic to prove concurrent programs in practice?

e Need to prove only tightly-coupled programs?

Can they be handled through model-checking?

e Could loose-coupled concurrency become the norm,
say through mobile computing?

Status of Program Design and Verification in Four Decades

e Astounding gains for sequential programming.

e Vast improvement in understanding of concurrent programming.

Status of Program Design and Verification in Four Decades

e Astounding gains for sequential programming.
e Vast improvement in understanding of concurrent programming.

e Theory and practice lag considerably for the latter, compared to the
former.

e Very small concurrent programs proved manually, occasionally.

e Larger concurrent programs proved using model checking. Only bright
spot.

Why sequential Programs are more amenable
Hoare’s Proof Theory: Program specification by pre- and postcondition.
Permits verification of sequential program code for a given specification.

Proof rules: permit composition of the component specifications, for
hierarchical construction.

Specification used in program construction, instead of source code.

Why sequential Programs are more amenable
Hoare’s Proof Theory: Program specification by pre- and postcondition.
Permits verification of sequential program code for a given specification.

Proof rules: permit composition of the component specifications, for
hierarchical construction.

Specification used in program construction, instead of source code.

Concurrent programming lacks a theory of composable specification.
Pre- and postcondition do not compose for concurrent programs.

Needed: a scalable theory of composable specification of concurrent
programs.

Motivation for the current work:
Commutative, Associative Fold of a bag

e Bag u.
Commutative, associative binary operator &

Write fold of u as >u.
e Problem: Replace all elements of u by >u.
o Strategy: Define f; that transforms u

e reduces the size of u by k, and
o the resulting bag has the same fold as the original bag.

An Orc Program

fi = get(x); get(y); put(x B y)

fi = Al ficr, k>1

Given that u has n items initially, n > 1, apply f,—1.

e Safety: Finally u has one item, the fold of the original items. Easy.

e Progress: Program terminates. Hard.

The result does not hold for f,. There is deadlock.

e No known proof technique for this program.

Observations about the problem

e Desired: Respect the recursive program structure in proof.
e Note interplay between sequential and concurrent aspects.

e Entire code is not available.

S
Another very difficult program to prove

{x=0}
x=x+1[] x:=x+2
{x=73}

L
Owicki’s Thesis

e Construct annotation of each sequential component.
{x=10}
({x=0vx=2}x:=x+1{x=1Vx=3}
[{x=0vx=1}x=x+2{x=2Vx=3})

{x=1vx=3)A(x=2Vvx=3)}

{x=3}

Owicki’s Thesis

e Construct annotation of each sequential component.
{x =0}
({x=0vx=2}x:=x+1{x=1vx=3}
[{x=0vx=1}x:=x+2{x=2Vx=3})

{x=1Vvx=3)A(x=2Vvx=3)}

{x=3}
e Show: proofs don’t interfere, e.g.,
given assertions valid in concurrent execution
{x=0vx=2)A(x=0Vvx=1)} x:=x+2 {x=0VvVx=2}
{x=0vx=1D)A(x=0vx=2)} x:=x+1 {x=0Vvx=1}

Assessment

First real proof technique for concurrent programs.
Works well for small tightly-coupled components.
Not scalable.

Needs program code.

No notion of a specification.

L
Rely-Guarantee of Cliff Jones

e Replace non-interference proofs by checks against stable predicates.
e Hoare-like proof rule.

e Limited to safety properties.

Unity by Chandy and Misra

Each (g—s) is a guarded action.

e Prove program properties, not assertions at program points:

o A resource is never granted unless requested.
e A request for a resource is eventually granted.

Specification is a set of properties.

Composition rules for specification are given.

The guard holds as a precondition in concurrent execution.

Simplify program structure: loop (g —s) [| loop (g —s') [| -~

S
Limitations of the Unity approach

e Does not support traditional program structure.

e Auxiliary variables needed to capture program control points.

Current Theory: Specification

e Terminal property: postcondition of a program for a given precondition.

e Perpetual property: holds throughout every program execution.

Similar to invariant.

o (Safety) once it requests a resource the thread waits until the resource is
granted,

e (Progress) once the resource is granted the thread will eventually release it.

e Specification: Terminal and Perpetual properties.

Summary of the approach

Create program annotation as before, but with restrictions.

Annotations are valid even under concurrent execution.
As in UNITY.

Bilateral: Derive terminal and perpetual properties from annotations.

And conversely.

Composition rules for specifications.

Program Model

command: Uninterruptible, terminating code,
e.g.. x:=x— 1, put on a channel.

action: Guarded command, b — «,
eg: x>0—x:=x—1,0r
get from a channel, where the guard is implicit.

f, g: component: action | f[lg | seq (fo, fi,-"

program: component executing alone.

Programming Constructs

e seq: Any sequential programming construct that has a proof rule, e.g.:

st
if b then s else ¢
while b do s

e Join: f [| g is commutative, associative.

e Arbitrary hierarchy of sequential and concurrent constructs:

(rle:lg)

Program Execution

Sequential components follow their execution rules.

Join: starts all components simultaneously.

Terminates when they all do.
Program control may reside at multiple program points simultaneously.
At any moment the action at some control point is executed.

Every control point is chosen eventually for execution.

Action Execution

Execution of b — « always terminates,
either effectively or ineffectively.
Effective execution:

b is true and « is executed to completion.
Program control moves past the action.
Ineffective execution:

bis false.

Program control remains before the action.

Evaluation of b is uninterruptible in all cases.

If bistrue: « isexecuted immediately.

Example: Distributed counter

Program f = [|; f; implements counter crr.

initially ctr =0

Jiw
initially old;, new; =0, 0
loop
new; := old; + 1;
if [ctr =old; — ctr = new;
| ctr # old; — old; := ctr |
forever

Example: Distributed counter

Program f = [|; fj implements counter ctr.

initially ctr =0

fio
initially old;, new; =0, 0
loop
new; := old; + 1;
if [ctr =old; — ctr = new;
| ctr # old; — old; := ctr]
forever
Show:

Safety: ctr is changed only by incrementation (increased by 1).

Progress: ctr is changed eventually.

Inviolable preconditions of actions

e Find precondition p of each action so that p remains true as long as
control remains at the action.

({x=0vx=2}x:=x+1{x=1Vx=3}

[{x=0vx=1}x:=x+2{x=2Vx=3})
{x=1vx=3)A(x=2Vvx=3)}

Inviolable preconditions of actions

¢ Find precondition p of each action so that p remains true as long as
control remains at the action.

({x=0vx=2}x:=x+1{x=1vx=3}
[{x=0vx=1}x:=x+2{x=2Vx=3})
{x=1vx=3)A(x=2Vvx=3)}

e Owicki: Check that precondition can not be violated by any concurrent
action.

Inviolable preconditions of actions

¢ Find precondition p of each action so that p remains true as long as
control remains at the action.

({x=0vx=2}x:=x+1{x=1vx=3}
[{x=0vx=1}x:=x+2{x=2Vx=3})
{x=1vx=3)A(x=2Vx=3)}
e Owicki: Check that precondition can not be violated by any concurrent
action.

e Unity: Programmer specifies guards for each action.

Inviolable preconditions of actions

Find precondition p of each action so that p remains true as long as
control remains at the action.

({x=0vx=2}x:=x+1{x=1vx=3}
J{x=0Vvx=1}x:=x+2{x=2Vx=3})
{x=1vx=3)A(x=2Vx=3)}

Owicki: Check that precondition can not be violated by any concurrent
action.

Unity: Programmer specifies guards for each action.

In the current theory:

Unknown concurrent environment.

General programs: Guards are usually too weak.
Control flow carries additional information.

Access rights to variables

e xlocalto f: f has exclusive write-access to x during any execution.

e plocal predicate of f: every variable in p is local to f.

Local Annotation

Annotation of a program in which all predicates are local to the
component in which they appear.

Assert: Given local annotation in which {p} b — «,
p holds whenever b — « is executed.

Construct local annotation using Hoare-proof rules for seq construct.

For join, use:

{r} f{s}
{r'} g {s'}
{rnriflle{sns's

Local Annotation: Distributed Counter

fio
initially old;, new; =0, 0
{true}
loop
{true}
aj 2 newj = old; + 1;
{new; = old; + 1}
if [;2 {new; = old; + 1} ctr = old; — ctr := new; {true}
| vj :o {new; = old; + 1} ctr # old; — old; := ctr {true}]
{true}
forever

Safety Property co

e p co gincomponent f:

Effective execution of any action of f in a p-state achieves a g-state.

e In program f: once p holds it continues to hold until ¢ is established.

e As a composition rule:

p co g holds in f if it holds in every component of f.

Formal definition of co

{r}f {s}
For every action b — « with precondition pre in the annotation of f :
{pre N\b Np} a{q}
{r}fipcoq|s}

Special cases of co

e stable p: Once p holds, it continues to hold:
p cop
e constant e: Value of expression e never changes:

(Ve :: stable e = ¢)

e invariant p: p always holds:

initially p and stable p

Distributed Counter, contd.

fio
initially old;, new; =0, 0
{true}
loop
{true}
«j i newj = old; + 1;
{new; = old; + 1}
if [;2 {new; = old; + 1} ctr = old; — ctr := new; {true}
| i io {new; = old; + 1} ctr # old; — old; := ctr {true}]
{true}
forever

Safety: ctr’s value is only incremented

e Show: ctr=m co ctr=mVctr=m+ lin f
prove: ctr =m co ctr =mV ctr = m+ 1 holds in all f;.
e For each action b — « with precondition pre, show:

{pre N\b A ctr=m} a{ctr=mV ctr=m+ 1}

e Only (3; may change the value of ctr. So, prove:

{ctr = m N new; = old; + 1 A ctr = old;}
ctr := new;
{ctr=mVctr=m+ 1}

Progress Properties

e Transient: Fundamental property. Compositional.

transient p: p is false eventually. OO—p.

Progress Properties

e Transient: Fundamental property. Compositional.
transient p: p is false eventually. OO—p.
e Ensures: p en g
Once p holds, it continues to hold until ¢ holds; and ¢ holds eventually.

More useful in practice.
Defined using transient.

Progress Properties

e Transient: Fundamental property. Compositional.
transient p: p is false eventually. OO—p.
e Ensures: p en g
Once p holds, it continues to hold until ¢ holds; and ¢ holds eventually.
More useful in practice.
Defined using transient.
e Leads-to: p+—gq
once p holds, ¢ holds eventually.

Typical property in a specification.
Defined using ensures.

Simplistic Definition of transient p in f:
p 1s false eventually in f

e Each action of f is effectively executed if p is a precondition, and
e its execution establishes —p.
For every action b — « of f with precondition pre :

pre A\p=Db
{pre Ap} a{-p}

{} f { transient p | }

Stronger Rules for transient p

e f: g: either f terminates or p transientin f AND p transient in g.

Sufficient: f terminates AND p transient in g.

Stronger Rules for transient p

e f: g: either f terminates or p transientin f AND p transient in g.

Sufficient: f terminates AND p transient in g.

e f[] g ptransientin for g.

Stronger Rules for transient p

e f; g: either f terminates or p transientin f AND p transient in g.

Sufficient: f terminates AND p transient in g.
e f[] g ptransientin for g.

e Inheritance: If p transient in ALL components of f, p transient in f.

Ensures: p en g

Once p holds, it continues to hold until ¢ holds; and ¢ holds eventually.

® pA—g copVgq

e transient p A —g

Distributed Counter

Prove: ctr increases eventually.
Can not be proved as an ensures property.

Prove:

In every step, either ctr increases, or

the number of old; that differ from ctr decreases.

nb: number of old; such that ctr # old;.

ctr=mAnb=N en nb<N V ctr>min f

(E)

S
Proof strategy

ctr=mAnb=N en nb<N V ctr>min f (E)

e To prove (E)in []; fi: Prove (E) in each f;.

To prove (E) in loop forever:
Since terminates, show (E) in: loop forever.
To prove (E) in loop forever:

using inheritance prove (E) in

To prove (E) in ,l.e., if
Since terminates, prove (E) in if
To prove (E) in if : prove (E) in and ~;, 1.e.,

Effective executions of and establish the postcondition of (E)
given its pre-condition.

Proof strategy
ctr=mAnb=N en nb<N V ctr>min f (E)

e To prove (E)in [|; fi; Prove (E) in each f;.

e To prove (E) in initialization; loop body; forever:
Since initialization terminates, show (E) in: loop body; forever.

Proof strategy
ctr=mAnb=N en nb<N V ctr>min f (E)

e To prove (E)in [|; fi; Prove (E) in each f;.

e To prove (E) in initialization; loop body; forever:
Since initialization terminates, show (E) in: loop body; forever.

e To prove (E) inloop body; forever:
using inheritance prove (E) in bodyj, .

Proof strategy
ctr=mAnb=N en nb<N V ctr>min f (E)

e To prove (E)in [|; fi; Prove (E) in each f;.

e To prove (E) in initialization; loop body; forever:
Since initialization terminates, show (E) in: loop body; forever.

e To prove (E) inloop body; forever:
using inheritance prove (E) in bodyj, .

e To prove (E) in body;, i.e., new;:= old; + 1;if [B;|~;]:
Since new; := old; + 1 terminates, prove (E) inif [5; | v;],

Proof strategy

ctr=mAnb=N en nb<N V ctr>min f (E)

To prove (E) in [|; fj: Prove (E) in each f;.

To prove (E) in initialization; loop body; forever:
Since initialization terminates, show (E) in: loop body; forever.

To prove (E) in loop body; forever:
using inheritance prove (E) in bodyj, .

To prove (E) in body;, i.e., new; := old; + 1;if [B; | v;]:
Since new; := old; + 1 terminates, prove (E) inif [5; | v;],

To prove (E) inif [3; | 7j|: prove (E)in fjand v, i.e.,
Effective executions of ; and ; establish the postcondition of (E)
given its pre-condition.

S
Proof Obligations
Relevant Annotation of f;:
if [B {new; =old;+ 1} ctr = old; — ctr := new; {true}

| i :o {new; = old; + 1} ctr # old; — old; := ctr {true}]

{true}

Proof Obligations:

Bj:: {ctr =m Anb =N Anew; = old; + 1 A ctr = old;}
ctr := new;
{nb < NV ctr > m}

v i+ {ctr =m Anb = N A new; = oldj + 1 A ctr # old;}
old; := ctr
{nb < NV ctr > m}

L
Leads-to

p — q: once p holds, g holds eventually.

e (basis) %

pP—4q,9— 1

e (transitivity) DT

e (disjunction) For any (finite or infinite) set of predicates §

(Vp:peS:p— q)
(Vp:peS:p)—q

Derived Rules: What makes Proofs Practical. For co
false co q

p co true

pcogq,p codq
pAp coghg

(CONJUNCTION)

pcogq,p codq
pVp coqVdq

(DISJUNCTION)

p coq
— s (LHS STRENGTHENING)
PAp €O ¢q

co
P—\C/II (RHS WEAKENING)
pcogvyg

L
Lightweight Derived Rules for +—

P =49

1. (implication
(imp) o g

2. (lhs strengthening, rhs weakening)
P = q
P'Ap = q
pr—qVdq

pr—=q\Nr,r—=s

3. (cancellation) p— qVs

S
Heavyweight Derived Rules for +—

p—q
stable p’
1. (PSP
(PSP) VAT
(induction)) well-founded.

(completion) p; and g; are predicates; i index over a finite set.

S
Heavyweight Derived Rules for +—

p—4q
stable p’

LPSP)

2. (induction) M : Program States — W. (W, <) well-founded.

S
Heavyweight Derived Rules for +—

p—4q
stable p’

LPSP)

2. (induction) M : Program States — W. (W, <) well-founded.

(VMm:=p ANM=mw— (p NM=<m)V q)
P = q

Heavyweight Derived Rules for —

prq
stable p’
pAP = gnp

1. (PSP)

2. (induction) M : Program States — W. (W, <) well-founded.

(VMm:=p ANM=mw— (p NM=<m)V q)
P = q

3. (completion) p; and ¢; are predicates; i index over a finite set.
(Vi
pi = qiVb
qi co q; Vb

)
(Vi pi) — (Vi gi)) Vb

e
Distributed Counter

e Provein f: ctrincreases unboundedly:

true — ctr > C, for any integer C
e Provedin f: ctr=mAnb=N en nb<N V ctr >m

e Use definition of — and its derived rules for the proof.

L
Distributed Counter, Contd.

ctr=mAnb=N en nb<NVctr>m
proven

basis rule of

PSP with

e
Distributed Counter, Contd.

ctr=mAnb=N en nb<NVctr>m
proven

ctr=mAnb=N — nb<NVctr>m
basis rule of leads-to

e
Distributed Counter, Contd.

ctr=mAnb=N en nb<NVctr>m
proven

ctr=mAnb=N — nb<NVctr>m
basis rule of leads-to

ctr=mAnb=N — ctr=mAnb<N V ctr >m
PSP with ctr =m co ctr=mVctr=m+ 1

L
Apply Induction Rule

ctr=mAnb=N +— ctr=mAnb<N V ctr >m

Induction rule:

VMmap AM=mw— (p NM=<m)V q)
P = q

Use nb for M and < for =< to conclude:

ctr=m +— ctr > m

Distributed Counter, Contd.

ctr=mAnb=N en nb<NVctr>m
proven

ctr=mAnb=N — nb<NVctr>m
basis rule of leads-to

ctr=mAnb=N en ctr=mAnb<NVctr>m
PSP with ctr = mcoctr=mV ctr =m+ 1

ctr =m +— ctr > m
Induction rule; well-founded order < over natural numbers

Distributed Counter, Contd.

ctr=mAnb=N en nb<NVctr>m
proven

ctr=mAnb=N — nb<NVctr>m
basis rule of leads-to

ctr=mAnb=N en ctr=mAnb<NVctr>m
PSP with ctr = mcoctr=mV ctr =m+ 1

ctr =m +— ctr > m
Induction rule; well-founded order < over natural numbers

true — ctr > C, for any integer C
Induction rule, well-founded order < over natural numbers.

