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Agonizing Reappraisal

• Is it realistic to prove concurrent programs in practice?

• Need to prove only tightly-coupled programs?

Can they be handled through model-checking?

• Could loose-coupled concurrency become the norm,
say through mobile computing?
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Status of Program Design and Verification in Four Decades

• Astounding gains for sequential programming.

• Vast improvement in understanding of concurrent programming.

• Theory and practice lag considerably for the latter, compared to the
former.

• Very small concurrent programs proved manually, occasionally.

• Larger concurrent programs proved using model checking. Only bright
spot.
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Why sequential Programs are more amenable

• Hoare’s Proof Theory: Program specification by pre- and postcondition.

• Permits verification of sequential program code for a given specification.

• Proof rules: permit composition of the component specifications, for
hierarchical construction.

• Specification used in program construction, instead of source code.

• Concurrent programming lacks a theory of composable specification.
Pre- and postcondition do not compose for concurrent programs.

• Needed: a scalable theory of composable specification of concurrent
programs.
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Motivation for the current work:
Commutative, Associative Fold of a bag

• Bag u.

Commutative, associative binary operator ⊕

Write fold of u as Σu.

• Problem: Replace all elements of u by Σu.

• Strategy: Define fk that transforms u

• reduces the size of u by k, and
• the resulting bag has the same fold as the original bag.



An Orc Program

f1 = get(x); get(y); put(x ⊕ y)

fk = f1 [] fk−1, k > 1

Given that u has n items initially, n > 1, apply fn−1.

• Safety: Finally u has one item, the fold of the original items. Easy.

• Progress: Program terminates. Hard.

The result does not hold for fn. There is deadlock.

• No known proof technique for this program.



Observations about the problem

• Desired: Respect the recursive program structure in proof.

• Note interplay between sequential and concurrent aspects.

• Entire code is not available.



Another very difficult program to prove

{x = 0}

x := x + 1 [] x := x + 2

{x = 3}



Owicki’s Thesis
• Construct annotation of each sequential component.

{x = 0}

( {x = 0 ∨ x = 2} x := x + 1 {x = 1 ∨ x = 3}

[] {x = 0 ∨ x = 1} x := x + 2 {x = 2 ∨ x = 3})

{(x = 1 ∨ x = 3) ∧ (x = 2 ∨ x = 3)}

{x = 3}
• Show: proofs don’t interfere, e.g.,

given assertions valid in concurrent execution

{(x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1)} x := x + 2 {x = 0 ∨ x = 2}
{(x = 0 ∨ x = 1) ∧ (x = 0 ∨ x = 2)} x := x + 1 {x = 0 ∨ x = 1}
· · ·
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Assessment

• First real proof technique for concurrent programs.

• Works well for small tightly-coupled components.

• Not scalable.

• Needs program code.

• No notion of a specification.



Rely-Guarantee of Cliff Jones

• Replace non-interference proofs by checks against stable predicates.

• Hoare-like proof rule.

• Limited to safety properties.



Unity by Chandy and Misra

• Simplify program structure: loop 〈g→ s〉 [] loop 〈g′→ s′〉 [] · · ·

• Each 〈g→ s〉 is a guarded action.

• Prove program properties, not assertions at program points:

• A resource is never granted unless requested.
• A request for a resource is eventually granted.

• Specification is a set of properties.

• Composition rules for specification are given.

The guard holds as a precondition in concurrent execution.



Limitations of the Unity approach

• Does not support traditional program structure.

• Auxiliary variables needed to capture program control points.



Current Theory: Specification

• Terminal property: postcondition of a program for a given precondition.

• Perpetual property: holds throughout every program execution.

Similar to invariant.

• (Safety) once it requests a resource the thread waits until the resource is
granted,

• (Progress) once the resource is granted the thread will eventually release it.

• Specification: Terminal and Perpetual properties.



Summary of the approach

• Create program annotation as before, but with restrictions.

• Annotations are valid even under concurrent execution.
As in UNITY.

• Bilateral: Derive terminal and perpetual properties from annotations.

And conversely.

• Composition rules for specifications.



Program Model

• command: Uninterruptible, terminating code,
e.g.: x := x− 1, put on a channel.

• action: Guarded command, b→α,
e.g.: x > 0→ x := x− 1, or

get from a channel, where the guard is implicit.

• f , g :: component: action | f [] g | seq (f0, f1, · · · fn)

• program: component executing alone.



Programming Constructs

• seq: Any sequential programming construct that has a proof rule, e.g.:

s; t
if b then s else t
while b do s

• Join: f [] g is commutative, associative.

• Arbitrary hierarchy of sequential and concurrent constructs:

(f [] g); (f ′ [] g′)



Program Execution

• Sequential components follow their execution rules.

• Join: starts all components simultaneously.

Terminates when they all do.

• Program control may reside at multiple program points simultaneously.

• At any moment the action at some control point is executed.

• Every control point is chosen eventually for execution.



Action Execution

• Execution of b→α always terminates,

either effectively or ineffectively.

• Effective execution:
b is true and α is executed to completion.
Program control moves past the action.

• Ineffective execution:
b is false.
Program control remains before the action.

• Evaluation of b is uninterruptible in all cases.

• If b is true: α is executed immediately.



Example: Distributed counter

Program f = []j fj implements counter ctr.

initially ctr = 0
fj ::

initially oldj, newj = 0, 0
loop

newj := oldj + 1;
if [ ctr = oldj → ctr := newj

| ctr 6= oldj → oldj := ctr ]
forever

Show:
Safety: ctr is changed only by incrementation (increased by 1).

Progress: ctr is changed eventually.
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Inviolable preconditions of actions

• Find precondition p of each action so that p remains true as long as
control remains at the action.

( {x = 0 ∨ x = 2} x := x + 1 {x = 1 ∨ x = 3}
[] {x = 0 ∨ x = 1} x := x + 2 {x = 2 ∨ x = 3})

{(x = 1 ∨ x = 3) ∧ (x = 2 ∨ x = 3)}

• Owicki: Check that precondition can not be violated by any concurrent
action.

• Unity: Programmer specifies guards for each action.

• In the current theory:
Unknown concurrent environment.
General programs: Guards are usually too weak.
Control flow carries additional information.
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Access rights to variables

• x local to f : f has exclusive write-access to x during any execution.

• p local predicate of f : every variable in p is local to f .



Local Annotation

• Annotation of a program in which all predicates are local to the
component in which they appear.

• Assert: Given local annotation in which {p} b→α,
p holds whenever b→α is executed.

• Construct local annotation using Hoare-proof rules for seq construct.

• For join, use:

{r} f {s}
{r′} g {s′}

{r ∧ r′} f [] g {s ∧ s′}



Local Annotation: Distributed Counter

fj ::
initially oldj, newj = 0, 0
{true}

loop
{true}
αj :: newj := oldj + 1;
{newj = oldj + 1}

if [ βj :: {newj = oldj + 1} ctr = oldj → ctr := newj {true}
| γj :: {newj = oldj + 1} ctr 6= oldj → oldj := ctr {true}]

{true}
forever



Safety Property co

• p co q in component f :

Effective execution of any action of f in a p-state achieves a q-state.

• In program f : once p holds it continues to hold until q is established.

• As a composition rule:

p co q holds in f if it holds in every component of f .



Formal definition of co

{r} f {s}
For every action b→α with precondition pre in the annotation of f :

{pre ∧ b ∧ p} α {q}
{r} f {p co q | s}



Special cases of co

• stable p: Once p holds, it continues to hold:

p co p

• constant e: Value of expression e never changes:

(∀c :: stable e = c)

• invariant p: p always holds:

initially p and stable p



Distributed Counter, contd.

fj ::
initially oldj, newj = 0, 0
{true}

loop
{true}
αj :: newj := oldj + 1;
{newj = oldj + 1}

if [ βj :: {newj = oldj + 1} ctr = oldj → ctr := newj {true}
| γj :: {newj = oldj + 1} ctr 6= oldj → oldj := ctr {true}]

{true}
forever



Safety: ctr’s value is only incremented

• Show: ctr = m co ctr = m ∨ ctr = m + 1 in f
prove: ctr = m co ctr = m ∨ ctr = m + 1 holds in all fj.

• For each action b→α with precondition pre, show:

{pre ∧ b ∧ ctr = m} α {ctr = m ∨ ctr = m + 1}

• Only βj may change the value of ctr. So, prove:

{ctr = m ∧ newj = oldj + 1 ∧ ctr = oldj}
ctr := newj

{ctr = m ∨ ctr = m + 1}



Progress Properties

• Transient: Fundamental property. Compositional.

transient p: p is false eventually. 23¬p.

• Ensures: p en q
Once p holds, it continues to hold until q holds; and q holds eventually.

More useful in practice.
Defined using transient.

• Leads-to: p 7→ q
once p holds, q holds eventually.

Typical property in a specification.
Defined using ensures.
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Simplistic Definition of transient p in f :
p is false eventually in f

• Each action of f is effectively executed if p is a precondition, and

• its execution establishes ¬p.

For every action b→α of f with precondition pre :
pre ∧ p⇒ b

{pre ∧ p} α {¬p}
{} f { transient p | }



Stronger Rules for transient p

• f ; g: either f terminates or p transient in f AND p transient in g.

Sufficient: f terminates AND p transient in g.

• f [] g: p transient in f or g.

• Inheritance: If p transient in ALL components of f , p transient in f .
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Ensures: p en q

Once p holds, it continues to hold until q holds; and q holds eventually.

• p ∧ ¬q co p ∨ q

• transient p ∧ ¬q



Distributed Counter

• Prove: ctr increases eventually.

• Can not be proved as an ensures property.

• Prove:

In every step, either ctr increases, or
the number of oldj that differ from ctr decreases.

• nb: number of oldj such that ctr 6= oldj.

ctr = m ∧ nb = N en nb < N ∨ ctr > m in f (E)



Proof strategy

ctr = m ∧ nb = N en nb < N ∨ ctr > m in f (E)

• To prove (E) in []j fj: Prove (E) in each fj.

• To prove (E) in initialization; loop bodyj forever:
Since initialization terminates, show (E) in: loop bodyj forever.

• To prove (E) in loop bodyj forever:
using inheritance prove (E) in bodyj, .

• To prove (E) in bodyj, i.e., newj := oldj + 1; if [βj | γj]:
Since newj := oldj + 1 terminates, prove (E) in if [βj | γj],

• To prove (E) in if [βj | γj]: prove (E) in βj and γj, i.e.,
Effective executions of βj and γj establish the postcondition of (E)
given its pre-condition.
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Proof Obligations

Relevant Annotation of fj:

if [ βj :: {newj = oldj + 1} ctr = oldj → ctr := newj {true}
| γj :: {newj = oldj + 1} ctr 6= oldj → oldj := ctr {true}]

{true}

Proof Obligations:

βj :: {ctr = m ∧ nb = N ∧ newj = oldj + 1 ∧ ctr = oldj}
ctr := newj

{nb < N ∨ ctr > m}

γj :: {ctr = m ∧ nb = N ∧ newj = oldj + 1 ∧ ctr 6= oldj}
oldj := ctr

{nb < N ∨ ctr > m}



Leads-to

p 7→ q: once p holds, q holds eventually.

• (basis) p en q
p 7→ q

• (transitivity) p 7→ q , q 7→ r
p 7→ r

• (disjunction) For any (finite or infinite) set of predicates S

(∀p : p ∈ S : p 7→ q)
(∨p : p ∈ S : p) 7→ q



Derived Rules: What makes Proofs Practical. For co

false co q

p co true

p co q , p′ co q′

p ∧ p′ co q ∧ q′
(CONJUNCTION)

p co q , p′ co q′

p ∨ p′ co q ∨ q′
(DISJUNCTION)

p co q

p ∧ p′ co q
(LHS STRENGTHENING)

p co q

p co q ∨ q′
(RHS WEAKENING)



Lightweight Derived Rules for 7→

1. (implication) p⇒ q
p 7→ q

2. (lhs strengthening, rhs weakening)
p 7→ q

p′ ∧ p 7→ q
p 7→ q ∨ q′

3. (cancellation) p 7→ q ∨ r , r 7→ s
p 7→ q ∨ s



Heavyweight Derived Rules for 7→

1. (PSP)

p 7→ q
stable p′

p ∧ p′ 7→ q ∧ p′

2. (induction) M : Program States →W. (W,≺) well-founded.

(∀m :: p ∧ M = m 7→ (p ∧ M ≺ m) ∨ q)
p 7→ q

3. (completion) pi and qi are predicates; i index over a finite set.

(∀i ::
pi 7→ qi ∨ b
qi co qi ∨ b

)
(∀i :: pi) 7→ (∀i :: qi) ∨ b
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Distributed Counter

• Prove in f : ctr increases unboundedly:

true 7→ ctr > C, for any integer C

• Proved in f : ctr = m ∧ nb = N en nb < N ∨ ctr > m

• Use definition of 7→ and its derived rules for the proof.



Distributed Counter, Contd.

ctr = m ∧ nb = N en nb < N ∨ ctr > m
proven

ctr = m ∧ nb = N 7→ nb < N ∨ ctr > m
basis rule of leads-to

ctr = m ∧ nb = N 7→ ctr = m ∧ nb < N ∨ ctr > m
PSP with ctr = m co ctr = m ∨ ctr = m + 1
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Apply Induction Rule

ctr = m ∧ nb = N 7→ ctr = m ∧ nb < N ∨ ctr > m

Induction rule:

(∀m :: p ∧ M = m 7→ (p ∧ M ≺ m) ∨ q)
p 7→ q

Use nb for M and < for ≺ to conclude:

ctr = m 7→ ctr > m
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