A theorem about the postorder numbers in the depth-first tree of a directed graph

Jayadev Misra

March 22, 2020

Abstract

We present a theorem that captures an important property of postorder numbering of the depth-first tree of a directed graph: any path in the graph from a lower to a higher numbered node includes a node that is the least-common ancestor of all nodes in the path. We apply this theorem in the proof of an algorithm for identifying the strongly-connected components.

Keywords: Graph algorithms, reachability in graphs, postorder number, depth-first traversal, strongly-connected components.

1 Background

Depth-first traversal is a fundamental tool in analyzing the structure and properties of both directed and undirected graphs. The traversal induces a tree structure on the nodes of a graph. The postorder numbers of the nodes in the tree are essential in the derivation of a variety of algorithms. We present a theorem that captures an important property of postorder numbering of the depth-first tree of a directed graph: any path in the graph from a lower to a higher numbered node includes a node that is the least-common ancestor of all nodes in the path. We apply this theorem in the proof of an algorithm, independently due to Kosaraju and Sharir [2], for identifying the strongly-connected components.

Conventions and Terminology The reader may get the background material about depth-first traversal from a number of sources; see, for example Cormen et. al. [1]. Write $u \rightarrow v$ to denote that there is a directed edge from node u to v, and $u \rightsquigarrow v$ for a directed path. Add a label to an edge or a path, as in $u \xrightarrow{p} v$ or $u \stackrel{p}{\sim} v$, to identify a specific edge or path. We assume that there is no self loop, $u \rightarrow u$. There is no technical difficulty in admitting self loops, but it makes some of the results easier to state and prove, without loss in generality.

A depth-first tree of a directed graph is constructed through a traversal starting at a node called root. Henceforth, a node is to be understood as
one reachable from root. The postorder number of node u in the depthfirst tree is denoted by u_{e}. Call u to be lower than v (or, v higher than u) if $u_{e}<v_{e}$. Ancestors of a node are defined according to the depth-first tree; we take a node to be an ancestor of itself. A cross edge is directed from a node to a non-ancestor.

In subsequent discussions, the terms related to trees, child and ancestor, refer to the depth-first tree, whereas edge and path refer to the given graph.

The following lemma describes a well-known property of postorder numbering of nodes in a tree.

Lemma 1 (Convexity rule) Suppose $x_{e} \leq y_{e} \leq z_{e}$ and z is an ancestor of x. Then z is an ancestor of y.

It is a well-known property of the depth-first traversal of a directed graph that a cross edge is directed from a higher to a lower node. The following lemma, Edge-ancestor, is a rewriting of this fact.
Lemma 2 (Edge-ancestor) For $u \rightarrow v: u_{e}<v_{e} \equiv v$ is ancestor of u.
Observe that absence of self loop is essential for this lemma because given $u \rightarrow u$ and that $u_{e}=u_{e}$ would imply that u is not its own ancestor, violating the definition of ancestor.
Corollary 1 A cross edge is directed from a higher to a lower node.

2 Path-ancestor Theorem

Theorem 1 (Path-ancestor Theorem) Given $u \stackrel{p}{\leadsto} v$, where $u_{e}<v_{e}$, the highest node in p is the least-common ancestor of all nodes in p.

It suffices to show that the highest node is an ancestor of all nodes in p, because it is an ancestor of itself. The theorem is valid even for a path that is not simple.

Let h be the highest node in p. Then the path is of the form $u \xrightarrow{l p} h \xrightarrow{r p} v$, where the first occurrence of h is as an extreme node in $l p$. We prove the result in two parts, that h is an ancestor of nodes in $l p$ (Lemma 3) and in $r p$ (Lemma 4).
Lemma 3 Given $u \stackrel{l_{p}}{\rightsquigarrow} h$ where h is the unique highest node in $l p, h$ is an ancestor of all nodes in $l p$.
Proof: proof is by induction on the length of $l p$.
(1) Base case, $l p$ has one edge: then $u \rightarrow h$ and $u_{e}<h_{e}$. From edgeancestor lemma, Lemma 2, h is an ancestor of u. Since h is an ancestor of itself, the result holds.
(2) Inductive case, $u \rightarrow u^{\prime} \xrightarrow[\sim]{l p^{\prime}} h$: Inductively, h is an ancestor of all nodes in $l p^{\prime}$ including u^{\prime}. If $u_{e}<u_{e}^{\prime}$, from edge-ancestor lemma, Lemma 2, u_{e}^{\prime} is an ancestor of u, hence h is an ancestor of u. If $u_{e}^{\prime}<u_{e}$ then $u_{e}^{\prime}<u_{e}<h_{e}$ and h is an ancestor of u^{\prime}. From the Convexity rule, Lemma $1, h$ is an ancestor of u.

Lemma 4 Given $u \stackrel{l p}{\rightsquigarrow} h \stackrel{r p}{\rightsquigarrow} v$ where h is the highest node, h is an ancestor of all nodes in $r p$ including v.

Proof: Note that all nodes of $l p$ and $r p$, including h, may occur multiple times in $r p$. Assign consecutive positive indexes to the nodes in $r p$, from v to h, starting with index 1 for v. We show that h is an ancestor of the node of index k, for all k where $k \geq 1$. Proof is by induction on k. From Lemma $3 h$ is an ancestor of u.
(1) Base case, $k=1$: We have $u_{e}<v_{e} \leq h_{e}$ and h is an ancestor of u. Applying the Convexity rule, Lemma $1, h$ is an ancestor of v.
(2) Inductive case, $k>1$: Let w be the node of index k, so the path is $u \stackrel{l_{p}}{\sim} h \stackrel{r p^{\prime}}{\rightsquigarrow} w \stackrel{r p^{\prime \prime}}{\sim} v$. If $w=u$ then h is an ancestor of w because h is an ancestor of u. So, assume $w \neq u$. Consider two cases.
(2.1) $u_{e}<w_{e}$: Then $u_{e}<w_{e} \leq h_{e}$. Applying the Convexity rule, Lemma $1, h$ is an ancestor of w.
(2.2) $u_{e}>w_{e}$: Then $w_{e}<u_{e}<v_{e}$. Let h^{\prime} be the highest node in $r p^{\prime \prime}$, the path from w to v. Its index is less than k because, from $w_{e}<v_{e} \leq h_{e}^{\prime}$, $h^{\prime} \neq w$. Inductively, h is an ancestor of h^{\prime}. Apply Lemma 3 on $w \rightsquigarrow h^{\prime}$ to conclude that h^{\prime} is an ancestor of w. Therefore, h is an ancestor of w.

3 An application: Strongly-connected Components

An excellent example of the usefulness of depth-first traversal is in identifying the strongly-connected components of a directed graph. The following algorithm appears in an unpublished manuscript, dated 1978, by Kosaraju, and independently in Sharir [2].

Abstract

Algorithm outline The algorithm runs in two phases. In phase 1, do a depth-first traversal of the given graph G and assign postorder numbers to nodes. In phase 2, identify the strongly-connected components as follows. Construct G^{-1} from G by reversing the directions of all edges of G. If there is a path $v \rightsquigarrow u$ in G^{-1}, where v has a higher postorder number than u in G (computed in phase 1), then (1) there is a path $u \rightsquigarrow v$ in G, and (2) from the path-ancestor theorem, v is an ancestor of u in the depth-first tree in G, so $v \rightsquigarrow u$ exists in G. Therefore, u and v are strongly-connected. The postorder numbers in G are used to guide phase 2 ; this is the only connection between the two phases. We describe the algorithm more formally, next.

Henceforth, the number of a node is its postorder number in G. The strongly-connected components $C_{0}, C_{1}, \cdots C_{n}$ are constructed in sequence. Component C_{0} consists of the highest numbered node, r_{0}, and the set of nodes reachable from it in G^{-1}, C_{1} consists of the highest numbered node r_{1} that is not in C_{0} and its reachable nodes in G^{-1} that are not in C_{0}, and so forth, continuing until every node belongs to some component. Specifically,

- (SCC) Let r_{j} be the highest numbered node that is not in any C_{i}, $0 \leq i<j$. Then C_{j} is the set of reachable nodes from r_{j} in G^{-1} which do not belong to any $C_{i}, 0 \leq i<j$. That is,

$$
\begin{aligned}
& r_{j}=v \text { where } v_{e}=\left\{\max x:\left(\forall i: 0 \leq i<j: x \notin C_{i}\right): x_{e}\right\} \\
& C_{j}=\left\{u \mid r_{j} \rightsquigarrow u \text { in } G^{-1},\left(\forall i: 0 \leq i<j: u \notin C_{i}\right)\right\}
\end{aligned}
$$

Theorem 2 Each $C_{j}, 0 \leq j \leq n$, is a strongly-connected component.
Proof: The proof of the theorem is in two parts.

1. Each C_{j} is strongly-connected: We show that every node u in C_{j}, $u \neq r_{j}$, is strongly-connected to r_{j}. Then every pair of nodes in C_{j} are strongly-connected through r_{j}.

there is $u \rightsquigarrow r_{j}$ in G	,$r_{j} \rightsquigarrow u$ exists in $G^{-1} \quad$ (A)
r_{j} is higher than u	, choice of r_{j} in (SCC)
r_{j} is an ancestor of u in G	, from path-ancestor theorem
$r_{j} \rightsquigarrow u$ exists in G	, from above
$u \rightsquigarrow r_{j} \rightsquigarrow u$ in G	, combining above with (A)

2. Each C_{j} is a strongly-connected component: We show that u and v in different components are not strongly-connected. Suppose $u \rightsquigarrow v$, $u \in C_{j}$ and $v \in C_{k}$ where $j<k$. Then, $r_{j} \rightsquigarrow u \rightsquigarrow v$, so v is reachable from r_{j}. Also, $v \in C_{k}$ means $v \notin C_{i}, 0 \leq i<k$, so $v \notin C_{i}, 0 \leq i<j$. So, $v \in C_{j}$, according to rule (SCC).

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. McGraw Hill and MIT press, third edition, 2009.
[2] Micha Sharir. A strong-connectivity algorithm and its applications to data flow analysis. Computers and Mathematics with Applications, 7(1):67-72, 1981.

