A theorem about the postorder numbers in the
depth-first tree of a directed graph

Jayadev Misra
March 22, 2020

Abstract

We present a theorem that captures an important property of pos-
torder numbering of the depth-first tree of a directed graph: any path in
the graph from a lower to a higher numbered node includes a node that
is the least-common ancestor of all nodes in the path. We apply this the-
orem in the proof of an algorithm for identifying the strongly-connected
components.

Keywords: Graph algorithms, reachability in graphs, postorder number,
depth-first traversal, strongly-connected components.

1 Background

Depth-first traversal is a fundamental tool in analyzing the structure and
properties of both directed and undirected graphs. The traversal induces
a tree structure on the nodes of a graph. The postorder numbers of the
nodes in the tree are essential in the derivation of a variety of algorithms.
We present a theorem that captures an important property of postorder
numbering of the depth-first tree of a directed graph: any path in the
graph from a lower to a higher numbered node includes a node that is the
least-common ancestor of all nodes in the path. We apply this theorem in
the proof of an algorithm, independently due to Kosaraju and Sharir [2],
for identifying the strongly-connected components.

Conventions and Terminology The reader may get the background
material about depth-first traversal from a number of sources; see, for ex-
ample Cormen et. al. [1]. Write u— v to denote that there is a directed
edge from node u to v, and u ~» v for a directed path. Add a label to
an edge or a path, as in u 2> v or u~> v, to identify a specific edge or
path. We assume that there is no self loop, u— u. There is no technical
difficulty in admitting self loops, but it makes some of the results easier
to state and prove, without loss in generality.

A depth-first tree of a directed graph is constructed through a traversal
starting at a node called root. Henceforth, a node is to be understood as



one reachable from root. The postorder number of node u in the depth-
first tree is denoted by u.. Call u to be lower than v (or, v higher than
u) if ue < ve. Ancestors of a node are defined according to the depth-first
tree; we take a node to be an ancestor of itself. A cross edge is directed
from a node to a non-ancestor.

In subsequent discussions, the terms related to trees, child and ances-
tor, refer to the depth-first tree, whereas edge and path refer to the given
graph. O

The following lemma describes a well-known property of postorder
numbering of nodes in a tree.

Lemma 1 (Convexity rule) Suppose ze < ye < z. and z is an ancestor
of . Then z is an ancestor of y. m|

It is a well-known property of the depth-first traversal of a directed
graph that a cross edge is directed from a higher to a lower node. The
following lemma, Edge-ancestor, is a rewriting of this fact.

Lemma 2 (Edge-ancestor) For u—v: ue < v. = v is ancestor of u. O

Observe that absence of self loop is essential for this lemma because
given u— u and that u. = ue would imply that u is not its own ancestor,
violating the definition of ancestor.

Corollary 1 A cross edge is directed from a higher to a lower node.

2 Path-ancestor Theorem

Theorem 1 (Path-ancestor Theorem) Given u~sv, where ue < ve, the
highest node in p is the least-common ancestor of all nodes in p. O

It suffices to show that the highest node is an ancestor of all nodes in
p, because it is an ancestor of itself. The theorem is valid even for a path
that is not simple.

Let h be the highest node in p. Then the path is of the form u B v,
where the first occurrence of h is as an extreme node in lp. We prove the
result in two parts, that h is an ancestor of nodes in Ip (Lemma 3) and in
rp (Lemma 4).

Lemma 3 Given w2 h where h is the unique highest node in Ip, h is an
ancestor of all nodes in Ip.

Proof: proof is by induction on the length of Ip.

(1) Base case, lp has one edge: then u— h and u. < h.. From edge-
ancestor lemma, Lemma 2, h is an ancestor of u. Since h is an ancestor
of itself, the result holds.

’

(2) Inductive case, u — u’ 2, he Inductively, h is an ancestor of all
nodes in lp’ including u’. If u. < u., from edge-ancestor lemma, Lemma 2,
u, is an ancestor of u, hence h is an ancestor of u. If u. < wu. then
u, < ue < he and h is an ancestor of u’. From the Convexity rule,
Lemma 1, h is an ancestor of w.



Lemma 4 Given u%h ‘% v where h is the highest node, h is an ancestor
of all nodes in rp including v.

Proof: Note that all nodes of Ip and rp, including h, may occur multiple
times in rp. Assign consecutive positive indexes to the nodes in rp, from
v to h, starting with index 1 for v. We show that h is an ancestor of the
node of index k, for all kK where k > 1. Proof is by induction on k. From
Lemma 3 h is an ancestor of u.

(1) Base case, k = 1: We have ue < ve < he and h is an ancestor of u.
Applying the Convexity rule, Lemma 1, h is an ancestor of v.

(2) Inductive case, k > 1: Let w be the node of index k, so the path is

lp rp’ rp’’ . .
u~h ~ w ~ v. If w=wu then h is an ancestor of w because h is an

ancestor of u. So, assume w # u. Consider two cases.

(2.1) ue < we: Then ue < we < he. Applying the Convexity rule,
Lemma 1, h is an ancestor of w.

(2.2) ue > we: Then we < ue < ve. Let A’ be the highest node in rp”, the
path from w to v. Its index is less than k because, from w. < v. < hl,
h' # w. Inductively, h is an ancestor of h’. Apply Lemma 3 on w~+h’ to
conclude that A’ is an ancestor of w. Therefore, h is an ancestor of w. O

3 An application: Strongly-connected Com-
ponents

An excellent example of the usefulness of depth-first traversal is in iden-
tifying the strongly-connected components of a directed graph. The fol-
lowing algorithm appears in an unpublished manuscript, dated 1978, by
Kosaraju, and independently in Sharir [2].

Algorithm outline The algorithm runs in two phases. In phase 1,
do a depth-first traversal of the given graph G and assign postorder num-
bers to nodes. In phase 2, identify the strongly-connected components as
follows. Construct G~' from G by reversing the directions of all edges
of G. If there is a path v ~»u in G~!, where v has a higher postorder
number than u in G (computed in phase 1), then (1) there is a path u~~v
in G, and (2) from the path-ancestor theorem, v is an ancestor of u in
the depth-first tree in G, so v ~ u exists in G. Therefore, u and v are
strongly-connected. The postorder numbers in G are used to guide phase
2; this is the only connection between the two phases. We describe the
algorithm more formally, next.

Henceforth, the number of a node is its postorder number in G. The
strongly-connected components Cy, C1, - - - C), are constructed in sequence.
Component Cy consists of the highest numbered node, ro, and the set of
nodes reachable from it in G~*, C; consists of the highest numbered node
r1 that is not in Cy and its reachable nodes in G~! that are not in Co,
and so forth, continuing until every node belongs to some component.
Specifically,



e (SCC) Let r; be the highest numbered node that is not in any Cj,
0 < i < j. Then Cj is the set of reachable nodes from r; in G~* which do
not belong to any Cj, 0 <i < j. That is,
rj =v whereve ={maz z: (Vi:0<i<j:x&C;):xz}
Cij={u|rj~uin G, (Vi:0<i<j:ugC)}
Theorem 2 Each Cj, 0 < j <mn, is a strongly-connected component.

Proof: The proof of the theorem is in two parts.

1. Each Cj is strongly-connected: We show that every node u in Cj,
w # rj, is strongly-connected to r;. Then every pair of nodes in C;
are strongly-connected through r;.

there is u~>r; in G , 7~ exists in G* (A)
r; is higher than u , choice of r; in (SCC)

r; is an ancestor of w in G, from path-ancestor theorem
rj~u exists in G , from above

u~ri~~uin G , combining above with (A)

2. Each Cj is a strongly-connected component: We show that u and v
in different components are not strongly-connected. Suppose u~>v,
u € C;j and v € Cy, where j < k. Then, r; ~>u~->v, so v is reachable
from r;. Also, v € Cy means v € C;, 0 < i< k,sov & C;, 0 <i < j.
So, v € C}, according to rule (SCC). O

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. McGraw Hill and MIT press,
third edition, 2009.

[2] Micha Sharir. A strong-connectivity algorithm and its applications
to data flow analysis. Computers and Mathematics with Applications,
7(1):67-72, 1981.



