
A theorem about the postorder numbers in the

depth-first tree of a directed graph

Jayadev Misra

March 22, 2020

Abstract

We present a theorem that captures an important property of pos-
torder numbering of the depth-first tree of a directed graph: any path in
the graph from a lower to a higher numbered node includes a node that
is the least-common ancestor of all nodes in the path. We apply this the-
orem in the proof of an algorithm for identifying the strongly-connected
components.

Keywords: Graph algorithms, reachability in graphs, postorder number,
depth-first traversal, strongly-connected components.

1 Background

Depth-first traversal is a fundamental tool in analyzing the structure and
properties of both directed and undirected graphs. The traversal induces
a tree structure on the nodes of a graph. The postorder numbers of the
nodes in the tree are essential in the derivation of a variety of algorithms.
We present a theorem that captures an important property of postorder
numbering of the depth-first tree of a directed graph: any path in the
graph from a lower to a higher numbered node includes a node that is the
least-common ancestor of all nodes in the path. We apply this theorem in
the proof of an algorithm, independently due to Kosaraju and Sharir [2],
for identifying the strongly-connected components.

Conventions and Terminology The reader may get the background
material about depth-first traversal from a number of sources; see, for ex-
ample Cormen et. al. [1]. Write u→ v to denote that there is a directed
edge from node u to v, and u v for a directed path. Add a label to
an edge or a path, as in u

p→ v or u
p
 v, to identify a specific edge or

path. We assume that there is no self loop, u→u. There is no technical
difficulty in admitting self loops, but it makes some of the results easier
to state and prove, without loss in generality.

A depth-first tree of a directed graph is constructed through a traversal
starting at a node called root. Henceforth, a node is to be understood as

1



one reachable from root. The postorder number of node u in the depth-
first tree is denoted by ue. Call u to be lower than v (or, v higher than
u) if ue < ve. Ancestors of a node are defined according to the depth-first
tree; we take a node to be an ancestor of itself. A cross edge is directed
from a node to a non-ancestor.

In subsequent discussions, the terms related to trees, child and ances-
tor, refer to the depth-first tree, whereas edge and path refer to the given
graph. 2

The following lemma describes a well-known property of postorder
numbering of nodes in a tree.

Lemma 1 (Convexity rule) Suppose xe ≤ ye ≤ ze and z is an ancestor
of x. Then z is an ancestor of y. 2

It is a well-known property of the depth-first traversal of a directed
graph that a cross edge is directed from a higher to a lower node. The
following lemma, Edge-ancestor, is a rewriting of this fact.

Lemma 2 (Edge-ancestor) For u→v: ue < ve ≡ v is ancestor of u. 2

Observe that absence of self loop is essential for this lemma because
given u→u and that ue = ue would imply that u is not its own ancestor,
violating the definition of ancestor.

Corollary 1 A cross edge is directed from a higher to a lower node.

2 Path-ancestor Theorem

Theorem 1 (Path-ancestor Theorem) Given u
p
 v, where ue < ve, the

highest node in p is the least-common ancestor of all nodes in p. 2

It suffices to show that the highest node is an ancestor of all nodes in
p, because it is an ancestor of itself. The theorem is valid even for a path
that is not simple.

Let h be the highest node in p. Then the path is of the form u
lp
 h

rp
 v,

where the first occurrence of h is as an extreme node in lp. We prove the
result in two parts, that h is an ancestor of nodes in lp (Lemma 3) and in
rp (Lemma 4).

Lemma 3 Given u
lp
 h where h is the unique highest node in lp, h is an

ancestor of all nodes in lp.

Proof: proof is by induction on the length of lp.
(1) Base case, lp has one edge: then u→h and ue < he. From edge-

ancestor lemma, Lemma 2, h is an ancestor of u. Since h is an ancestor
of itself, the result holds.

(2) Inductive case, u→ u′
lp′
 h: Inductively, h is an ancestor of all

nodes in lp′ including u′. If ue < u′e, from edge-ancestor lemma, Lemma 2,
u′e is an ancestor of u, hence h is an ancestor of u. If u′e < ue then
u′e < ue < he and h is an ancestor of u′. From the Convexity rule,
Lemma 1, h is an ancestor of u.

2



Lemma 4 Given u
lp
 h

rp
 v where h is the highest node, h is an ancestor

of all nodes in rp including v.

Proof: Note that all nodes of lp and rp, including h, may occur multiple
times in rp. Assign consecutive positive indexes to the nodes in rp, from
v to h, starting with index 1 for v. We show that h is an ancestor of the
node of index k, for all k where k ≥ 1. Proof is by induction on k. From
Lemma 3 h is an ancestor of u.

(1) Base case, k = 1: We have ue < ve ≤ he and h is an ancestor of u.
Applying the Convexity rule, Lemma 1, h is an ancestor of v.

(2) Inductive case, k > 1: Let w be the node of index k, so the path is

u
lp
 h

rp′
 w

rp′′
 v. If w = u then h is an ancestor of w because h is an

ancestor of u. So, assume w 6= u. Consider two cases.

(2.1) ue < we: Then ue < we ≤ he. Applying the Convexity rule,
Lemma 1, h is an ancestor of w.

(2.2) ue > we: Then we < ue < ve. Let h′ be the highest node in rp′′, the
path from w to v. Its index is less than k because, from we < ve ≤ h′e,
h′ 6= w. Inductively, h is an ancestor of h′. Apply Lemma 3 on w h′ to
conclude that h′ is an ancestor of w. Therefore, h is an ancestor of w. 2

3 An application: Strongly-connected Com-
ponents

An excellent example of the usefulness of depth-first traversal is in iden-
tifying the strongly-connected components of a directed graph. The fol-
lowing algorithm appears in an unpublished manuscript, dated 1978, by
Kosaraju, and independently in Sharir [2].

Algorithm outline The algorithm runs in two phases. In phase 1,
do a depth-first traversal of the given graph G and assign postorder num-
bers to nodes. In phase 2, identify the strongly-connected components as
follows. Construct G−1 from G by reversing the directions of all edges
of G. If there is a path v u in G−1, where v has a higher postorder
number than u in G (computed in phase 1), then (1) there is a path u v
in G, and (2) from the path-ancestor theorem, v is an ancestor of u in
the depth-first tree in G, so v u exists in G. Therefore, u and v are
strongly-connected. The postorder numbers in G are used to guide phase
2; this is the only connection between the two phases. We describe the
algorithm more formally, next.

Henceforth, the number of a node is its postorder number in G. The
strongly-connected components C0, C1, · · ·Cn are constructed in sequence.
Component C0 consists of the highest numbered node, r0, and the set of
nodes reachable from it in G−1, C1 consists of the highest numbered node
r1 that is not in C0 and its reachable nodes in G−1 that are not in C0,
and so forth, continuing until every node belongs to some component.
Specifically,

3



• (SCC) Let rj be the highest numbered node that is not in any Ci,
0 ≤ i < j. Then Cj is the set of reachable nodes from rj in G−1 which do
not belong to any Ci, 0 ≤ i < j. That is,

rj = v where ve = {max x : (∀i : 0 ≤ i < j : x 6∈ Ci) : xe}
Cj = {u| rj u in G−1, (∀i : 0 ≤ i < j : u 6∈ Ci)}

Theorem 2 Each Cj , 0 ≤ j ≤ n, is a strongly-connected component.

Proof: The proof of the theorem is in two parts.

1. Each Cj is strongly-connected: We show that every node u in Cj ,
u 6= rj , is strongly-connected to rj . Then every pair of nodes in Cj

are strongly-connected through rj .

there is u rj in G , rj u exists in G−1 (A)
rj is higher than u , choice of rj in (SCC)
rj is an ancestor of u in G , from path-ancestor theorem
rj u exists in G , from above
u rj u in G , combining above with (A)

2. Each Cj is a strongly-connected component: We show that u and v
in different components are not strongly-connected. Suppose u v,
u ∈ Cj and v ∈ Ck where j < k. Then, rj u v, so v is reachable
from rj . Also, v ∈ Ck means v 6∈ Ci, 0 ≤ i < k, so v 6∈ Ci, 0 ≤ i < j.
So, v ∈ Cj , according to rule (SCC). 2

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. McGraw Hill and MIT press,
third edition, 2009.

[2] Micha Sharir. A strong-connectivity algorithm and its applications
to data flow analysis. Computers and Mathematics with Applications,
7(1):67–72, 1981.

4


